Skip to main content

Python native companion module to the graspologic library

Project description

graspologic-native

graspologic-native is a companion library to graspologic. This module is a Python native module created by using the network_partitions crate from the same repository.

The purpose of this module is to provide a faster implementations of graph/network analysis algorithms in a native without trying to work through the troubles of releasing Rust crates and Python modules at the same time (in specific as the Python graspologic module is expected to be far more active than the Rust crates or native modules are).

The only capability currently implemented by this module is the Leiden algorithm, described in the paper From Louvain to Leiden: guaranteeing well-connected communities, Traag, V.A.; Waltman, L.; Van, Eck N.J., Scientific Reports, Vol. 9, 2019. In addition to the paper, the reference implementation provided at https://github.com/CWTSLeiden/networkanalysis was used as a starting point.

Releases

Builds are provided for x86_64 architectures only, for Windows, macOS, and Linux, for Python versions 3.6->3.9.

Build Tools

Rust nightly 1.37+ (we are currently using 1.40) The python package maturin

Please consider using graspologic in lieu of graspologic-native, as the former will contain some nice wrappers to make usage of this library more pythonic.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distributions

graspologic_native-1.1.0_dev202112151584181483-cp36-abi3-win_amd64.whl (193.9 kB view details)

Uploaded CPython 3.6+ Windows x86-64

graspologic_native-1.1.0_dev202112151584181483-cp36-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (598.0 kB view details)

Uploaded CPython 3.6+ macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

File details

Details for the file graspologic_native-1.1.0_dev202112151584181483.tar.gz.

File metadata

  • Download URL: graspologic_native-1.1.0_dev202112151584181483.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for graspologic_native-1.1.0_dev202112151584181483.tar.gz
Algorithm Hash digest
SHA256 4bd6ad1773030b58b72a8869f45cce127112592d0346680ca6125f483fda7e97
MD5 1a65b71e59fa7d14e03e460e215c908a
BLAKE2b-256 e55c49e63b55b0b70b92260f8653e76d638e38d4818cf7eb5da2fb602ba599bb

See more details on using hashes here.

File details

Details for the file graspologic_native-1.1.0_dev202112151584181483-cp36-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.1.0_dev202112151584181483-cp36-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 01af911dd97a3faba02c996958bf8adc0bb3049278b19c46c8b979bfbf3b9abd
MD5 7b167f8494b53638a5365263d8a7b7b8
BLAKE2b-256 17ce0882074e8a7d9baa9911425e89eb72540575575c1f8314322e409760b26e

See more details on using hashes here.

File details

Details for the file graspologic_native-1.1.0_dev202112151584181483-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.1.0_dev202112151584181483-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f54ab4662be47e4229fb0851a27a78d729e313f74dc7509af42e15c836a6d337
MD5 88e96ffd1c26e86c7e9567670a74ea2b
BLAKE2b-256 d7d248c39133ae6daf811553e485263f583319869b370c194948c4f66bc02905

See more details on using hashes here.

File details

Details for the file graspologic_native-1.1.0_dev202112151584181483-cp36-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for graspologic_native-1.1.0_dev202112151584181483-cp36-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b4f3c838daabb913ad9f93b2fd32edd3ed5dc2092aa5318746d030910e7a46e6
MD5 4ec6baff59a584746d0daafc72eb8a35
BLAKE2b-256 2796c083f02b15d99a2fe4a0f22cf5acfd3fb26d8122549022c1744d58f47a71

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page