Skip to main content

Python native companion module to the graspologic library

Project description

graspologic-native

graspologic-native is a companion library to graspologic. This module is a Python native module created by using the network_partitions crate from the same repository.

The purpose of this module is to provide a faster implementations of graph/network analysis algorithms in a native without trying to work through the troubles of releasing Rust crates and Python modules at the same time (in specific as the Python graspologic module is expected to be far more active than the Rust crates or native modules are).

The only capability currently implemented by this module is the Leiden algorithm, described in the paper From Louvain to Leiden: guaranteeing well-connected communities, Traag, V.A.; Waltman, L.; Van, Eck N.J., Scientific Reports, Vol. 9, 2019. In addition to the paper, the reference implementation provided at https://github.com/CWTSLeiden/networkanalysis was used as a starting point.

Releases

Builds are provided for x86_64 architectures only, for Windows, macOS, and Linux, for Python versions 3.6->3.9.

Build Tools

Rust nightly 1.37+ (we are currently using 1.40) The python package maturin

Please consider using graspologic in lieu of graspologic-native, as the former will contain some nice wrappers to make usage of this library more pythonic.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distributions

graspologic_native-1.1.0_dev202112161588557547-cp36-abi3-win_amd64.whl (193.9 kB view details)

Uploaded CPython 3.6+ Windows x86-64

graspologic_native-1.1.0_dev202112161588557547-cp36-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (597.8 kB view details)

Uploaded CPython 3.6+ macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

File details

Details for the file graspologic_native-1.1.0_dev202112161588557547.tar.gz.

File metadata

  • Download URL: graspologic_native-1.1.0_dev202112161588557547.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for graspologic_native-1.1.0_dev202112161588557547.tar.gz
Algorithm Hash digest
SHA256 b5a2c56d45b480ebcc4bb9fc13edb0ec1ec22ae40267761f728e83c8f1a3cb1f
MD5 32cbd9f3b361d8d5e62ba3a6a3376a9c
BLAKE2b-256 2fb5d13889f1b7db80ea533e91d6977237f6fdb36c7b4aa03d97b0c5710ec4fa

See more details on using hashes here.

File details

Details for the file graspologic_native-1.1.0_dev202112161588557547-cp36-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.1.0_dev202112161588557547-cp36-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 581500af10b7e7af8cd59ecf666c86be2881d6f88286e09b8227948464515d39
MD5 41b9dbf9feb0225efd9d1c1febec9561
BLAKE2b-256 160b426882a8253556a8199aa5941ad82aad4baaf5f8251eebff9f8da0513443

See more details on using hashes here.

File details

Details for the file graspologic_native-1.1.0_dev202112161588557547-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.1.0_dev202112161588557547-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d448891a7ae4d7bf8a1f95d3c28bc4c41d0a89259998ce8e614d93baf5ea24b6
MD5 97e40c401db12d4bb98b0770b179349a
BLAKE2b-256 34b54fc12faa509f6e33f757f0994cfcc613504187c825ac8702cc83add722db

See more details on using hashes here.

File details

Details for the file graspologic_native-1.1.0_dev202112161588557547-cp36-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for graspologic_native-1.1.0_dev202112161588557547-cp36-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 48638b87f396ee9881b1a39a378a473a56d702426eb622686c49a4d61fbfe380
MD5 b3687b4b6ba824c958e3c060308e2e56
BLAKE2b-256 48f63e6cfdc4bb3d919eabced7b035193c3eb98ae54002b58450358d12250ba4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page