Skip to main content

Python native companion module to the graspologic library

Project description

graspologic-native

graspologic-native is a companion library to graspologic. This module is a Python native module created by using the network_partitions crate from the same repository.

The purpose of this module is to provide a faster implementations of graph/network analysis algorithms in a native without trying to work through the troubles of releasing Rust crates and Python modules at the same time (in specific as the Python graspologic module is expected to be far more active than the Rust crates or native modules are).

The only capability currently implemented by this module is the Leiden algorithm, described in the paper From Louvain to Leiden: guaranteeing well-connected communities, Traag, V.A.; Waltman, L.; Van, Eck N.J., Scientific Reports, Vol. 9, 2019. In addition to the paper, the reference implementation provided at https://github.com/CWTSLeiden/networkanalysis was used as a starting point.

Releases

Builds are provided for x86_64 architectures only, for Windows, macOS, and Linux, for Python versions 3.6->3.9.

Build Tools

Rust nightly 1.37+ (we are currently using 1.40) The python package maturin

Please consider using graspologic in lieu of graspologic-native, as the former will contain some nice wrappers to make usage of this library more pythonic.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distributions

graspologic_native-1.1.1_dev202202181866660663-cp36-abi3-win_amd64.whl (195.0 kB view details)

Uploaded CPython 3.6+ Windows x86-64

graspologic_native-1.1.1_dev202202181866660663-cp36-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (597.7 kB view details)

Uploaded CPython 3.6+ macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

File details

Details for the file graspologic_native-1.1.1_dev202202181866660663.tar.gz.

File metadata

  • Download URL: graspologic_native-1.1.1_dev202202181866660663.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for graspologic_native-1.1.1_dev202202181866660663.tar.gz
Algorithm Hash digest
SHA256 f2e1bc3b166d68817ea8539fe92bbba7b52fe5a37d7d67f9f368b2bb2b6ff3be
MD5 d9fc925abb704e8f0ee35861cd493c46
BLAKE2b-256 9658270387de6454272161db324824f193591a03363f5c4c3cd6e23d7c024b52

See more details on using hashes here.

File details

Details for the file graspologic_native-1.1.1_dev202202181866660663-cp36-abi3-win_amd64.whl.

File metadata

  • Download URL: graspologic_native-1.1.1_dev202202181866660663-cp36-abi3-win_amd64.whl
  • Upload date:
  • Size: 195.0 kB
  • Tags: CPython 3.6+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for graspologic_native-1.1.1_dev202202181866660663-cp36-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 7f56dba4fa380d924a48129346e76790c98722823b8e7b458546a520bc67ae99
MD5 8f2f1b1f5d7b889f7fd00afba8dc0a0b
BLAKE2b-256 ecbf51854c7d5998f4e13d76ba83bba622a7ed27f9497fac3bc0fc90a65bb8f3

See more details on using hashes here.

File details

Details for the file graspologic_native-1.1.1_dev202202181866660663-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.1.1_dev202202181866660663-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3576d27771c860f6c0950c96ab8ff51f59ce17700c3cc7b063f8e4dac8487cf4
MD5 596220c93ca6779ca7aa9ccca2b72ea1
BLAKE2b-256 8b599bbe2d0dee4854fedd79d10d6a6fde021879967bf9bfbf7077b4ebb0ff9e

See more details on using hashes here.

File details

Details for the file graspologic_native-1.1.1_dev202202181866660663-cp36-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for graspologic_native-1.1.1_dev202202181866660663-cp36-abi3-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c6afb6b0781f7de48c22243a82c9ea939dd4a837a765ca35fb1fc32b896f6e01
MD5 bde3318b6f0bc6288d55cccf4d931ed7
BLAKE2b-256 b3d4bde75b50cc06792a4021b9294e0bdb1472d3e0893d8438914ed65f5ffc92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page