Skip to main content

Always know what to expect from your data.

Project description

Build Status Coverage Status Documentation Status

Great Expectations

Always know what to expect from your data.

What is great_expectations?

Great Expectations helps teams save time and promote analytic integrity by offering a unique approach to automated testing: pipeline tests. Pipeline tests are applied to data (instead of code) and at batch time (instead of compile or deploy time). Pipeline tests are like unit tests for datasets: they help you guard against upstream data changes and monitor data quality.

Software developers have long known that automated testing is essential for managing complex codebases. Great Expectations brings the same discipline, confidence, and acceleration to data science and engineering teams.

Why would I use Great Expectations?

To get more done with data, faster. Teams use great_expectations to

  • Save time during data cleaning and munging.

  • Accelerate ETL and data normalization.

  • Streamline analyst-to-engineer handoffs.

  • Monitor data quality in production data pipelines and data products.

  • Simplify debugging data pipelines if (when) they break.

  • Codify assumptions used to build models when sharing with distributed teams or other analysts.

How do I get started?

It’s easy! First use pip install:

    $ pip install great_expectations

Then run this command in the root directory of the project you want to try Great Expectations on:

    $ great_expectations init

You can also clone the repository, which includes examples of using great_expectations.

$ git clone https://github.com/great-expectations/great_expectations.git
$ pip install great_expectations/

What expectations are available?

Expectations include: - expect_table_row_count_to_equal - expect_column_values_to_be_unique - expect_column_values_to_be_in_set - expect_column_mean_to_be_between - …and many more

Visit the glossary of expectations for a complete list of expectations that are currently part of the great expectations vocabulary.

Can I contribute?

Absolutely. Yes, please. Start here, and don’t be shy with questions!

How do I learn more?

For full documentation, visit Great Expectations on readthedocs.io.

Down with Pipeline Debt! explains the core philosophy behind Great Expectations. Please give it a read, and clap, follow, and share while you’re at it.

For quick, hands-on introductions to Great Expectations’ key features, check out our walkthrough videos:

What’s the best way to get in touch with the Great Expectations team?

If you have questions, comments, feature requests, etc., opening an issue is definitely the best path forward.

We also have a slack channel, which you can join here: https://tinyurl.com/great-expectations-slack

Great Expectations doesn’t do X. Is it right for my use case?

It depends. If you have needs that the library doesn’t meet yet, please upvote an existing issue(s) or open a new issue and we’ll see what we can do. Great Expectations is under active development, so your use case might be supported soon.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

great_expectations-0.7.3.tar.gz (803.3 kB view details)

Uploaded Source

Built Distribution

great_expectations-0.7.3-py2.py3-none-any.whl (387.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file great_expectations-0.7.3.tar.gz.

File metadata

  • Download URL: great_expectations-0.7.3.tar.gz
  • Upload date:
  • Size: 803.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for great_expectations-0.7.3.tar.gz
Algorithm Hash digest
SHA256 551c6660ba1de9d04184326f80ee495da9798aa8da3934b148b3844008da799b
MD5 575211492533975d17d4baf8e5f9d4a9
BLAKE2b-256 6e22aa5d2923619f5225c62c5e4e16a4d0c2fc41f64c7db20faae93733b24f95

See more details on using hashes here.

File details

Details for the file great_expectations-0.7.3-py2.py3-none-any.whl.

File metadata

  • Download URL: great_expectations-0.7.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 387.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for great_expectations-0.7.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 aa8a23b56f2640a231d93b2e06d663482a7bd553d7bc41b785e3065df80d79ce
MD5 7dd8040f073b22e18b03ebf27653493f
BLAKE2b-256 f92ea85d8eabc65302398e395d97ab07a12674e0963869f1c0a5c915ff8a731f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page