Spatial tools to translate raster or vector geometry data to regular grids
Project description
Gridit
Description
Gridit provides spatial tools to translate raster or vector geometry data to regular grids.
Installation
This package primarily depends on NumPy and SciPy, and has several optional dependencies.
Pip can be used to install all optional dependencies:
$ pip install gridit[optional]
Or from a clone of this repository, create an "editable" install:
$ pip install -e .[optional]
Testing
Run pytest -v
.
Examples
Python
>>> import matplotlib.pyplot as plt # optional
>>> from gridit import Grid
>>> grid = Grid.from_vector("tests/data/Mana_polygons.shp", 100)
>>> print(grid)
<Grid: resolution=100.0, shape=(24, 18), top_left=(1748600.0, 5451200.0) />
>>> ar_vec = grid.array_from_vector("tests/data/Mana_polygons.shp", "K_m_d")
>>> plt.imshow(ar_vec)
<matplotlib.image.AxesImage at 0x7fb6c7dacf10>
>>> ar_rast = grid.array_from_raster("tests/data/Mana.tif")
>>> plt.imshow(ar_rast)
<matplotlib.image.AxesImage at 0x7fb6bc4ad6d0>
Command line
Grid and array from vector, write PNG image and shapefile grid:
$ gridit --grid-from-vector tests/data/Mana_polygons.shp --resolution 100 \
--array-from-vector tests/data/Mana_polygons.shp \
--array-from-vector-attribute=K_m_d \
--write-image /tmp/Mana_Kmd.png \
--write-vector /tmp/Mana_Kmd.shp
Grid from bounding box, array from raster, write GeoTIFF raster:
$ gridit --grid-from-bbox 1748600 5448800 1750400 5451200 --resolution 100 \
--array-from-raster tests/data/Mana.tif \
--write-raster /tmp/Mana_100m.tif
Grid from vector, array from netCDF, write text array file for each time stat:
$ gridit --grid-from-vector tests/data/waitaku2.shp --resolution 250 \
--array-from-vector tests/data/waitaku2.shp \
--array-from-vector-attribute rid \
--array-from-netcdf tests/data/waitaku2.nc:rid:myvar:0 \
--time-stats "quantile(0.75),max" \
--write-text /tmp/waitaku2_cat.ref
Grid from MODFLOW, array from vector, write text array file:
$ gridit --grid-from-modflow tests/data/modflow/mfsim.nam:h6 \
--array-from-vector tests/data/waitaku2.shp \
--array-from-vector-attribute rid \
--write-text /tmp/waitaku2_rid.txt
See other options with:
$ gridit -h
Funding
Funding for the development of gridit has been provided by New Zealand Strategic Science Investment Fund as part of GNS Science’s (https://www.gns.cri.nz/) Groundwater Research Programme.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gridit-0.6.tar.gz
.
File metadata
- Download URL: gridit-0.6.tar.gz
- Upload date:
- Size: 626.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8e264235aa953e9df4a9e3cec624cd6d32c9666db099e60a476c3d11909dc30 |
|
MD5 | 7de817ba2bd4ab6971fec616be136bb4 |
|
BLAKE2b-256 | 0a77dfefc95b777febf5e95cdbece9d8f326962ee7cfc200d9d4917ee2af44f0 |
File details
Details for the file gridit-0.6-py3-none-any.whl
.
File metadata
- Download URL: gridit-0.6-py3-none-any.whl
- Upload date:
- Size: 39.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd2debb640bba75dd4c5c77a84b26eb6acf9c8ff5b6159e42a465503ec0b0e0d |
|
MD5 | eb71e6328986449618705dd21f70f181 |
|
BLAKE2b-256 | ca3a08451398977589691034f6f245846f6a0a5ef2bd851887d8285380f889b2 |