Skip to main content

GeostatTools: A geostatistical toolbox.

Project description

Welcome to GSTools

DOI PyPI version Build Status Build status Coverage Status Documentation Status Code style: black

GSTools-LOGO

Purpose

GeoStatTools provides geostatistical tools for random field generation and variogram estimation based on many readily provided and even user-defined covariance models.

Installation

The package can be installed via pip. On Windows you can install WinPython to get Python and pip running.

pip install gstools

Documentation for GSTools

You can find the documentation under geostat-framework.readthedocs.io.

Tutorials and Examples

The documentation also includes some tutorials, showing the most important use cases of GSTools, which are

Some more examples are provided in the examples folder.

Spatial Random Field Generation

The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by Heße et al. 2014.

Examples

Gaussian Covariance Model

This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model.

from gstools import SRF, Gaussian
import matplotlib.pyplot as plt
# structured field with a size 100x100 and a grid-size of 1x1
x = y = range(100)
model = Gaussian(dim=2, var=1, len_scale=10)
srf = SRF(model)
field = srf((x, y), mesh_type='structured')
plt.imshow(field)
plt.show()

Random field

Truncated Power Law Model

GSTools also implements truncated power law variograms, which can be represented as a superposition of scale dependant modes in form of standard variograms, which are truncated by an upper lengthscale lu.

This example shows the truncated power law based on the stable model and is given by

Truncated Power Law - Stable

which gives Gaussian modes for alpha=2 or exponential modes for alpha=1

This results in:

Truncated Power Law - Stable

import numpy as np
import matplotlib.pyplot as plt
from gstools import SRF, TPLStable
x = y = np.linspace(0, 100, 100)
model = TPLStable(
    dim=2,           # spatial dimension
    var=1,           # variance (C is calculated internally, so that the variance is actually 1)
    len_low=0,       # lower truncation of the power law
    len_scale=10,    # length scale (a.k.a. range), len_up = len_low + len_scale
    nugget=0.1,      # nugget
    anis=0.5,        # anisotropy between main direction and transversal ones
    angles=np.pi/4,  # rotation angles
    alpha=1.5,       # shape parameter from the stable model
    hurst=0.7,       # hurst coefficient from the power law
)
srf = SRF(model, mean=1, mode_no=1000, seed=19970221, verbose=True)
field = srf((x, y), mesh_type='structured', force_moments=True)
# show the field in xy coordinates
plt.imshow(field.T, origin="lower")
plt.show()

Random field

Estimating and fitting variograms

The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function.

All covariance models can be used to fit given variogram data by a simple interface.

Example

This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again.

import numpy as np
from gstools import SRF, Exponential, Stable, vario_estimate_unstructured
from gstools.covmodel.plot import plot_variogram
import matplotlib.pyplot as plt
# generate a synthetic field with an exponential model
x = np.random.RandomState(19970221).rand(1000) * 100.
y = np.random.RandomState(20011012).rand(1000) * 100.
model = Exponential(dim=2, var=2, len_scale=8)
srf = SRF(model, mean=0, seed=19970221)
field = srf((x, y))
# estimate the variogram of the field with 40 bins
bins = np.arange(40)
bin_center, gamma = vario_estimate_unstructured((x, y), field, bins)
plt.plot(bin_center, gamma)
# fit the variogram with a stable model. (no nugget fitted)
fit_model = Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
plot_variogram(fit_model, x_max=40)
# output
print(fit_model)
plt.show()

Which gives:

Stable(dim=2, var=1.92, len_scale=8.15, nugget=0.0, anis=[1.], angles=[0.], alpha=1.05)

Variogram

User defined covariance models

One of the core-features of GSTools is the powerfull CovModel class, which allows to easy define covariance models by the user.

Example

Here we reimplement the Gaussian covariance model by defining just the correlation function:

from gstools import CovModel
import numpy as np
# use CovModel as the base-class
class Gau(CovModel):
    def correlation(self, r):
        return np.exp(-(r/self.len_scale)**2)

And that's it! With Gau you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above.

Have a look at the documentation for further information on incorporating optional parameters and optimizations.

VTK Export

After you have created a field, you may want to save it to file, so we provide a handy VTK export routine:

from gstools import SRF, Gaussian, vtk_export
x = y = range(100)
model = Gaussian(dim=2, var=1, len_scale=10)
srf = SRF(model)
field = srf((x, y), mesh_type='structured')
vtk_export("field", (x, y), field, mesh_type='structured')

Which gives a RectilinearGrid VTK file field.vtr.

Requirements:

Contact

You can contact us via info@geostat-framework.org.

License

GPL © 2018-2019

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gstools-1.0.0.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

gstools-1.0.0-cp36-cp36m-win_amd64.whl (271.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

gstools-1.0.0-cp36-cp36m-win32.whl (254.3 kB view details)

Uploaded CPython 3.6m Windows x86

gstools-1.0.0-cp36-cp36m-manylinux1_x86_64.whl (538.2 kB view details)

Uploaded CPython 3.6m

gstools-1.0.0-cp36-cp36m-manylinux1_i686.whl (512.4 kB view details)

Uploaded CPython 3.6m

gstools-1.0.0-cp36-cp36m-macosx_10_6_intel.whl (368.2 kB view details)

Uploaded CPython 3.6m macOS 10.6+ intel

gstools-1.0.0-cp35-cp35m-win_amd64.whl (269.2 kB view details)

Uploaded CPython 3.5m Windows x86-64

gstools-1.0.0-cp35-cp35m-win32.whl (252.4 kB view details)

Uploaded CPython 3.5m Windows x86

gstools-1.0.0-cp35-cp35m-manylinux1_x86_64.whl (529.8 kB view details)

Uploaded CPython 3.5m

gstools-1.0.0-cp35-cp35m-manylinux1_i686.whl (502.2 kB view details)

Uploaded CPython 3.5m

gstools-1.0.0-cp35-cp35m-macosx_10_6_intel.whl (359.8 kB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

gstools-1.0.0-cp27-cp27mu-manylinux1_x86_64.whl (527.9 kB view details)

Uploaded CPython 2.7mu

gstools-1.0.0-cp27-cp27mu-manylinux1_i686.whl (503.3 kB view details)

Uploaded CPython 2.7mu

gstools-1.0.0-cp27-cp27m-win_amd64.whl (276.0 kB view details)

Uploaded CPython 2.7m Windows x86-64

gstools-1.0.0-cp27-cp27m-win32.whl (258.3 kB view details)

Uploaded CPython 2.7m Windows x86

gstools-1.0.0-cp27-cp27m-manylinux1_x86_64.whl (527.9 kB view details)

Uploaded CPython 2.7m

gstools-1.0.0-cp27-cp27m-manylinux1_i686.whl (503.2 kB view details)

Uploaded CPython 2.7m

gstools-1.0.0-cp27-cp27m-macosx_10_6_intel.whl (375.3 kB view details)

Uploaded CPython 2.7m macOS 10.6+ intel

File details

Details for the file gstools-1.0.0.tar.gz.

File metadata

  • Download URL: gstools-1.0.0.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/38.2.4 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.6.3

File hashes

Hashes for gstools-1.0.0.tar.gz
Algorithm Hash digest
SHA256 4c3a4f7d6073bcdb8d209492f57e19d65725b15e7a1cbebb077b1dfa37e8352a
MD5 c0e0c143152bf657b0bc1d97baab4632
BLAKE2b-256 d2593962d3e34b74e6eff2582fa2ad43acb7135ec6220a87c7e9453046f78083

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.0.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 271.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15

File hashes

Hashes for gstools-1.0.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b35a605d6d8dd2fcf6586a84df06e96191d5a2aef7ec1d92f6e772a04380b4af
MD5 9bdb04590f2d21ec5374ccb52dc81e4e
BLAKE2b-256 2016edfc305e70b65263fb16e8a033087e582fbf25a70f0314d074d7e28fbb0a

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: gstools-1.0.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 254.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15

File hashes

Hashes for gstools-1.0.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d433998102bf4d7e979fb54dc4dc29798de482f5d267d4e6ebdd5a5967836be9
MD5 840817c875dd246e8d8f4e402abd4ae6
BLAKE2b-256 0114e9eb0bf5f7f7d6ee26602ef06aaf6c4c817446f7b282801249a10a600eb3

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.0.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 538.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/38.2.4 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.6.3

File hashes

Hashes for gstools-1.0.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f47e823ed3f7ecd601945e68e74fa4632aaa9f0d303de7ae10ea165bcb5373c1
MD5 7a6cb010e5e1078e45558867a7562fb2
BLAKE2b-256 13e255111757a941b0bda1681df8f6256adc3608c44dfae58cad8cb41c105f3b

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.0.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 512.4 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/38.2.4 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.6.3

File hashes

Hashes for gstools-1.0.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8be40d76d3a6e69516648bced021a2b5eee9819740524150d0c48ec8ffcad438
MD5 2431e63683353e1e7c6850f531d9b87d
BLAKE2b-256 c354066e4f9c8c5fd9e7d2c2d49df5a060cfc574d325c895ca89580e97b668bf

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

  • Download URL: gstools-1.0.0-cp36-cp36m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 368.2 kB
  • Tags: CPython 3.6m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15

File hashes

Hashes for gstools-1.0.0-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 afff25837de087aa11b81c5113f329d70a80fd67ef69c2c0d744f9e21a5a978b
MD5 8e6545258b98a81296911e856639c13d
BLAKE2b-256 76922f9d719f22a6f3bb1cc78103a9be9b20c7937f6a7e13af4146d12717ad19

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.0.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 269.2 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15

File hashes

Hashes for gstools-1.0.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 02772188c09a82a71df3ffb57e1dba8d5f98b430a6eaee667b96c96ef87607f3
MD5 c49ed4c5da397c3d5521eb1b6a58bf5c
BLAKE2b-256 0bf77b02f2aee254e624a331a45fefe909d1eb1b307f8c523eaff660d36aa5a6

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: gstools-1.0.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 252.4 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15

File hashes

Hashes for gstools-1.0.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 a62c5666b0a160b557226f0a7d78e773a7c215a477a856fd5eeb708d05a86f65
MD5 483804e9d5d702866d72eb72c7681101
BLAKE2b-256 2a0686a51dc8b104bc73e277e7b4be38c895869dd1bafa24d3f824cca9e7dc25

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.0.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 529.8 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.5.6

File hashes

Hashes for gstools-1.0.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 61eb695209decab0a457ac2a928764b4cef6d4c63aa843908088965e109fc7e3
MD5 702acaace21176cf5fe676e3ffc25af4
BLAKE2b-256 bdfc6ec735c7f9e5bb9a7ffcc3fbd9f7d8f9e3b3e5737b20e02da6dc0c46a923

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.0.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 502.2 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.5.6

File hashes

Hashes for gstools-1.0.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 44770e52e310a94062ccba8496c816f5fef7072c7b9d40030f049f29c878abde
MD5 33f484eaafc999b1c577452dcd3edf5d
BLAKE2b-256 71b693a484eb411abd80a0aa52cdacad35012ec8eb148301c213dbbc0d21caef

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: gstools-1.0.0-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 359.8 kB
  • Tags: CPython 3.5m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15

File hashes

Hashes for gstools-1.0.0-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 41f29347e6a4bd53d62e73e0c2331e0a787131f0d9a02cf4f9b1afd314f81cc5
MD5 c5daa47e8ca5ec8c76455434d4366505
BLAKE2b-256 5bef1a30f0c1b1b93764f5b675017df7d1e2faf029a36e4faf6f9e78053220bc

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.0.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 527.9 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/38.2.4 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.14

File hashes

Hashes for gstools-1.0.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f65de5e20ce18d1b41583b45320dfab454a9f1bcd01a9f21aca88c5e51b3d954
MD5 0fc294697697437636069475f17e8e1d
BLAKE2b-256 6e70494c30e9816e91248ade96abb2d57c51176e574554b740ef2e324ff01b3f

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.0.0-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 503.3 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/38.2.4 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.14

File hashes

Hashes for gstools-1.0.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5adc5fcac457bdb35bbf2a949460010034b8f7a46f9feafb56dbf7ac38b38182
MD5 a20c6aabd87cf4acde035aba34540e38
BLAKE2b-256 6028234d662f213500238707afdc98baa9f140e74cf4d233e0ea4f85040903f8

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.0.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 276.0 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15

File hashes

Hashes for gstools-1.0.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 5ca9e9b89f838f4f590abb2ea32be7408ae0d08d9606a65aeab14eb436a113c6
MD5 035bec38c34f8ae9c16860a6c16b5adc
BLAKE2b-256 17b43ebd0091410bb395f897b190b6e0619226c63693c6f9362a9dc8fcaf9ea5

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp27-cp27m-win32.whl.

File metadata

  • Download URL: gstools-1.0.0-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 258.3 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15

File hashes

Hashes for gstools-1.0.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 36229d725d4e74ecf33f944c5cd2aa910c65944d7a72c71b393f339b5d5e04e9
MD5 04f75679b6ce1f5046e59aa89ea40a72
BLAKE2b-256 f00ca24f5527bb0ace75fc6054c5d5f948fe0b20af3aad905689fbd1a42eb46a

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.0.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 527.9 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/38.2.4 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.14

File hashes

Hashes for gstools-1.0.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8b52002fc8df4b9f8b8367b015d550bc06c587ebbf69f9e858711c603c94f582
MD5 8db61d9ad79d2c89f6bd8bd868fcf879
BLAKE2b-256 6df5a9549bebc01e458b392ed2a8350f7de71585f4beb70ae2beb1493f3c3a1a

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.0.0-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 503.2 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/38.2.4 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.14

File hashes

Hashes for gstools-1.0.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4e400a0621875f5c0e8ec9df9640f05abb665ab10225f7b1deefcff38094be81
MD5 96e95c0c45e9598fe32bf1293cda3a28
BLAKE2b-256 718b7ae5bb285982cd592e79e6dff2a621dcd6a1b0f35412912e85e4c2c270eb

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.0.0-cp27-cp27m-macosx_10_6_intel.whl.

File metadata

  • Download URL: gstools-1.0.0-cp27-cp27m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 375.3 kB
  • Tags: CPython 2.7m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15

File hashes

Hashes for gstools-1.0.0-cp27-cp27m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 ff63b860d0d562694416e6dcaf26fa8fc9c106fbaa8bacdb4c913852a43ed1b2
MD5 06f6f25838054e112c0bbd8f8490e350
BLAKE2b-256 6172b677f6532cbda18c1857a77632b51023a0a0ea888342309d01665eb9fa7d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page