Skip to main content

GSTools: A geostatistical toolbox.

Project description

Welcome to GSTools

DOI PyPI version Conda Version Build Status Coverage Status Documentation Status Code style: black

GSTools-LOGO

Get in Touch!

GH-Discussions Slack-Swung Gitter-GSTools Email

Purpose

GeoStatTools provides geostatistical tools for various purposes:

  • random field generation
  • simple, ordinary, universal and external drift kriging
  • conditioned field generation
  • incompressible random vector field generation
  • (automated) variogram estimation and fitting
  • directional variogram estimation and modelling
  • data normalization and transformation
  • many readily provided and even user-defined covariance models
  • metric spatio-temporal modelling
  • plotting and exporting routines

Installation

conda

GSTools can be installed via conda on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal:

conda install gstools

In case conda forge is not set up for your system yet, see the easy to follow instructions on conda forge. Using conda, the parallelized version of GSTools should be installed.

pip

GSTools can be installed via pip on Linux, Mac, and Windows. On Windows you can install WinPython to get Python and pip running. Install the package by typing the following command in a command terminal:

pip install gstools

To install the latest development version via pip, see the documentation.

Citation

At the moment you can cite the Zenodo code publication of GSTools:

Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628

If you want to cite a specific version, have a look at the Zenodo site.

A publication for the GeoStat-Framework is in preperation.

Documentation for GSTools

You can find the documentation under geostat-framework.readthedocs.io.

Tutorials and Examples

The documentation also includes some tutorials, showing the most important use cases of GSTools, which are

The associated python scripts are provided in the examples folder.

Spatial Random Field Generation

The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by Heße et al. 2014.

Examples

Gaussian Covariance Model

This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model.

import gstools as gs
# structured field with a size 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.plot()

Random field

GSTools also provides support for geographic coordinates. This works perfectly well with cartopy.

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import gstools as gs
# define a structured field by latitude and longitude
lat = lon = range(-80, 81)
model = gs.Gaussian(latlon=True, len_scale=777, rescale=gs.EARTH_RADIUS)
srf = gs.SRF(model, seed=12345)
field = srf.structured((lat, lon))
# Orthographic plotting with cartopy
ax = plt.subplot(projection=ccrs.Orthographic(-45, 45))
cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree())
ax.coastlines()
ax.set_global()
plt.colorbar(cont)

lat-lon random field

A similar example but for a three dimensional field is exported to a VTK file, which can be visualized with ParaView or PyVista in Python:

import gstools as gs
# structured field with a size 100x100x100 and a grid-size of 1x1x1
x = y = z = range(100)
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2))
srf = gs.SRF(model)
srf((x, y, z), mesh_type='structured')
srf.vtk_export('3d_field') # Save to a VTK file for ParaView

mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python
mesh.contour(isosurfaces=8).plot()

3d Random field

Estimating and Fitting Variograms

The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function.

All covariance models can be used to fit given variogram data by a simple interface.

Example

This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again.

import numpy as np
import gstools as gs
# generate a synthetic field with an exponential model
x = np.random.RandomState(19970221).rand(1000) * 100.
y = np.random.RandomState(20011012).rand(1000) * 100.
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
# estimate the variogram of the field
bin_center, gamma = gs.vario_estimate((x, y), field)
# fit the variogram with a stable model. (no nugget fitted)
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
# output
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
print(fit_model)

Which gives:

Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09)

Variogram

Kriging and Conditioned Random Fields

An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated.

Example

For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them:

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

gridx = np.linspace(0.0, 15.0, 151)

# conditioned spatial random field class
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)

# generate the ensemble of field realizations
fields = []
for i in range(100):
    fields.append(cond_srf(gridx, seed=i))
    plt.plot(gridx, fields[i], color="k", alpha=0.1)
plt.scatter(cond_pos, cond_val, color="k")
plt.show()

Conditioned

User Defined Covariance Models

One of the core-features of GSTools is the powerful CovModel class, which allows to easy define covariance models by the user.

Example

Here we re-implement the Gaussian covariance model by defining just a correlation function, which takes a non-dimensional distance h = r/l:

import numpy as np
import gstools as gs
# use CovModel as the base-class
class Gau(gs.CovModel):
    def cor(self, h):
        return np.exp(-h**2)

And that's it! With Gau you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above.

Have a look at the documentation for further information on incorporating optional parameters and optimizations.

Incompressible Vector Field Generation

Using the original Kraichnan method, incompressible random spatial vector fields can be generated.

Example

import numpy as np
import gstools as gs
x = np.arange(100)
y = np.arange(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator='VectorField', seed=19841203)
srf((x, y), mesh_type='structured')
srf.plot()

yielding

vector field

VTK/PyVista Export

After you have created a field, you may want to save it to file, so we provide a handy VTK export routine using the .vtk_export() or you could create a VTK/PyVista dataset for use in Python with to .to_pyvista() method:

import gstools as gs
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.vtk_export("field") # Saves to a VTK file
mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory
mesh.plot()

Which gives a RectilinearGrid VTK file field.vtr or creates a PyVista mesh in memory for immediate 3D plotting in Python.

pyvista export

Requirements:

Optional

Contact

You can contact us via info@geostat-framework.org.

License

LGPLv3 © 2018-2021

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gstools-1.3.1.tar.gz (108.7 kB view details)

Uploaded Source

Built Distributions

gstools-1.3.1-cp39-cp39-win_amd64.whl (329.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

gstools-1.3.1-cp39-cp39-win32.whl (287.8 kB view details)

Uploaded CPython 3.9 Windows x86

gstools-1.3.1-cp39-cp39-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

gstools-1.3.1-cp39-cp39-manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

gstools-1.3.1-cp39-cp39-manylinux1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9

gstools-1.3.1-cp39-cp39-manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9

gstools-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl (332.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

gstools-1.3.1-cp38-cp38-win_amd64.whl (330.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

gstools-1.3.1-cp38-cp38-win32.whl (288.8 kB view details)

Uploaded CPython 3.8 Windows x86

gstools-1.3.1-cp38-cp38-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

gstools-1.3.1-cp38-cp38-manylinux2010_i686.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

gstools-1.3.1-cp38-cp38-manylinux1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8

gstools-1.3.1-cp38-cp38-manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.8

gstools-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl (327.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

gstools-1.3.1-cp37-cp37m-win_amd64.whl (326.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

gstools-1.3.1-cp37-cp37m-win32.whl (285.0 kB view details)

Uploaded CPython 3.7m Windows x86

gstools-1.3.1-cp37-cp37m-manylinux2010_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

gstools-1.3.1-cp37-cp37m-manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

gstools-1.3.1-cp37-cp37m-manylinux1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m

gstools-1.3.1-cp37-cp37m-manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m

gstools-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl (329.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

gstools-1.3.1-cp36-cp36m-win_amd64.whl (326.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

gstools-1.3.1-cp36-cp36m-win32.whl (284.8 kB view details)

Uploaded CPython 3.6m Windows x86

gstools-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

gstools-1.3.1-cp36-cp36m-manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

gstools-1.3.1-cp36-cp36m-manylinux1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m

gstools-1.3.1-cp36-cp36m-manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.6m

gstools-1.3.1-cp36-cp36m-macosx_10_9_x86_64.whl (329.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file gstools-1.3.1.tar.gz.

File metadata

  • Download URL: gstools-1.3.1.tar.gz
  • Upload date:
  • Size: 108.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1.tar.gz
Algorithm Hash digest
SHA256 3187fc800b3ae0245bef391dc492f0d7256d980dd8c488e36274f53aba9e6226
MD5 e0c668d3de7aca4702422ebc98ee5f8d
BLAKE2b-256 69300b61860a4e7454d63398ed18768e5e6b3b9a8cdaa399be42e579165f0e95

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 329.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6cc712384bfc9fadcfe49db51baa98e57ce0917191b8f4b04834a71e418097ec
MD5 583930376d0b849558ec7ffddf0a7aed
BLAKE2b-256 6f4bd6cba059ffa7a6782ba983b72be61720b3d2eeb00f57bf4c2b55731fac3a

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: gstools-1.3.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 287.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fb0618cf3499b92d656ac9c5bc01eeeb81fc5c73c451bd0e65604cd2ba4dd12b
MD5 3dcabbd1d811dc6226ef57662e400a47
BLAKE2b-256 5a4c9ac0f45feb50214335e96f41df577b1a5dc48a0f686f5db55ec36dbced26

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bf280ea5d7ab6dfd82a3121594e1fe3c62da9db17e6c785ea8db2dd651009259
MD5 fc48e4e834018c06ebd66dfef253f3b7
BLAKE2b-256 abdfaa28df12b0bd9fde052662a0d19443c5e27c5ce8cb61c91f0f53d8148d47

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.3.1-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bf74a88d0a09398a4de8a4d105d658080b3261e0b7f262680b4fac792acc5ac9
MD5 aca3a9be325df351e2b52332b2625324
BLAKE2b-256 1d101b0e1e03f45a559f653c2ca71493aea1ef612504ef43023815a2c4924649

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4f14ccc97bbc61d181aea76d62c55fc74acde561a3f5aec345d3a310489272ae
MD5 2093a80d1ebe16d020cab3d5747d4567
BLAKE2b-256 66cb305cd4bbc88699f984d5337203db5916a88811aea649859509267646569f

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.3.1-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5c5e3ff300f1de3c58d1674125929edf574654f6236736a9aa613f90f52e9c15
MD5 9ee7e2045629bfabbecad8068c6dd25f
BLAKE2b-256 1c37486a364588cef2d95cc6348fc17867d077dfdf6c025440ae08352ec596f6

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 332.3 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 560c5df20b03a7c13aefcb92c964ed9b50b7950920b943e4c7580cf6768a3b22
MD5 6341e0113058bf788a052f67dcfcc947
BLAKE2b-256 e9bb2d24867d357e5fbeed4dd70371bd9d9d081d37930d9f6dda739daffdc4d6

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 330.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e87181efebe8ef583185d71423140c7abfd609eca141582f9ba2a5672afa58c1
MD5 b5899d9e09656d6fee2f797a19880073
BLAKE2b-256 263b37ad7ad36ffe3ccc88e7e4a30578af56f90489b70e194fdb1f3e66e6a4fe

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: gstools-1.3.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 288.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6b60d8e70c5a6f43779efded4a24233f9d1b0ea37d6e8cc09223723766a03b12
MD5 977b7ec26f4bcca21ebbc753059185f9
BLAKE2b-256 6185c6d783e39e0584c601fce5f58021f47196381a37ab14571e0e78981508db

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e0075d57a2520de0f4fe1d88210d2add0609da8f768362dc9d4373dce774cd6f
MD5 85211c579916120c89d92e0a6b060802
BLAKE2b-256 64a84fb47fac43dddd5a35d402f6f3cb7564aa692df18903bfab54b134f9135f

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.3.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4a50d27ccd8ec78875d090b9086dc76a5fb97756d714762bd87b6201d942ed59
MD5 e4881c796307f93f3b06a49035d43031
BLAKE2b-256 96f104fc0dada38522b0c6ac9d7a2826a1614213303ce0ec27710ad32d01b3da

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 849d4212077e4045b2747bdf663dd660d9e624323dc1ce599966d146ea284e4a
MD5 144ab712d62d1bcf3a7790b6241d5321
BLAKE2b-256 decd12a8ec2540bbe63069a22ce33fe3f87fac9c3a8f075ebfaa196b68ec09bf

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.3.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d06b3fe5cc2c247e10a9978a80108c00709c86752e3af60dd8215a866a79212c
MD5 f83e0f1ccc4cd8ae86750846758246a9
BLAKE2b-256 4878a06334c67355d6bd71e25b17d25a8e4fc897a7b4b43719dabe31217cb1ac

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 327.7 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad86b431c6277861faa02ec94c0a59fea1c04aba9ee1760a7bca9f676f548c43
MD5 96b4223ce7c00f367f26378a67873c19
BLAKE2b-256 0096fa3e7d5208ec20e3fa91693defef6fd06ebff099e79786236fc69b8b8097

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 326.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 05e96bf88678ee2f00dddd31a9b33325bf3de45533688b81dd7a82876dbb5200
MD5 e3b8e46b7e8faf7c4a4482f45d2037ec
BLAKE2b-256 8a6cd282d255bbd08ba4f0afc0bed5c31f26652a9248110fa13eed2d483d6259

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: gstools-1.3.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 285.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 bdcabf760e1cb873cc9e08fc6dc53e448a05c0402b4ab9f7723fa4c25d8d2556
MD5 1b1719d138fa7b687ad6f982703b4bb2
BLAKE2b-256 e2d3993f32413dc7209a745208ccbdd69a57c88c7cbe8d8fc190d84f7aabf761

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 aefb2cafe0f02ff86037cd515487eda6d776eb4e82d550021001dcb87faed3f6
MD5 f8bfa9e53c2d556f685c523b6af047f7
BLAKE2b-256 c8a9d68e4e649091c0d8826a9303fc064ce5a5cfe7705f42d2830cf25a3764fd

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.3.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2fb8c2f05f81b707c7864244776c6111bdf3fb06f94501dc71a09f99513feb67
MD5 58a727ad15b55c28229e4b04d2ca5774
BLAKE2b-256 51762c089cd99b057c334a53afe05f3af6e684218ac11ce2e43013c985564b55

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4984352e278a10cae45f63994a369130ff480389bd2101149c434366e42caecf
MD5 f0b050bbade55d80f588d78722cd6283
BLAKE2b-256 820c5be9d719a23095ba3983f0722e75691f34b3177ecdad79ad36aface01f1d

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.3.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d99c37f6f5fd0205bf37d0e8a9fd720f5204942612c7adc57e367a49d7ec74d7
MD5 8f80ac2b16ad15bce1cdf6344e94a975
BLAKE2b-256 b70c5c28f532905f86148680e8cff89720eae8cd6d70332da0b8a1a4ba5f8d2d

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 329.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73cfea46f51c6fd7603ce60eca48c31f323735dfde8855b56bdb06686bef343f
MD5 eaa5ebc7429804abd680e6e80fc5f10c
BLAKE2b-256 d660eb4204d84418d9d61acab42fc93d88c23cca403db02fc3326e0540676421

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 326.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e2e7bc169c8290f7373b31e74f1caf68eade1bd384db42cfbbf001234e0cbbfa
MD5 482437f492fd02403bebca50b811a167
BLAKE2b-256 5a94b72ae38109021d501ac1cff24277a0dd866e2c4bbed0ab856a61b470c3d7

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: gstools-1.3.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 284.8 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 3c36637537956c98fed1c46e748c5c9af42d4f110785f4d9cae293872a7cf5d2
MD5 a7239142baec8e2d1a67a794492c7d74
BLAKE2b-256 97db0cb34f116e2fbcbf290bbe5c00dcd60541d368a8d52bcd068c4d4704531e

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e466f632f97a387e53884576380784bf3e0fcc76059de5b5e527c798bbb002c1
MD5 feb991ac87966124c0af951c82b0488e
BLAKE2b-256 4f66cae0aeca96934913f40ff1831a420d3f490dd114e87b188411bc7fcf39db

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: gstools-1.3.1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e00afb371fadd605be0c8e7e2f537167631a21990a93eea1519d37f2a059557f
MD5 678087bb34c6c75e9ac7c8179cc8834c
BLAKE2b-256 e0a8b1ef11dac4f56c36e9bb970fc1cd5a8a6a4605269c935028941c94f739f9

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1ff4c3e8282049b2f69f756e7842eaf3f2d580547390026535aa96c4cfc0e86f
MD5 f620f1975abb49af85d3c80096c92b6f
BLAKE2b-256 89b117fd4e7bab9d09ad104c9fc12437e6991a9eb1d2f736d8dc06cc64d89b87

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: gstools-1.3.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 38f5b86ee2fa561f3eb0b91daf4e6dbcb760591c643a7631b549a4834f61e224
MD5 8f9b97ab024c42a28116a79727c51462
BLAKE2b-256 b0734aff8aa970d59a384c02570718f4bd8d2a8994576ac03c4d99be9b15e8f5

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.3.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gstools-1.3.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 329.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for gstools-1.3.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1cc5ce1034cec1f552e5e7b0c6886e91e2c0455db3df0038e60d02233e379219
MD5 2531a7953cfb39a0b1b4d73723616ebf
BLAKE2b-256 e308836467d4300e97468d8bf7498eb79570138e52f03d01c97b3321fd9eaf1a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page