Skip to main content

GSTools: A geostatistical toolbox.

Project description

Welcome to GSTools

GMD DOI PyPI version Conda Version Build Status Coverage Status Documentation Status Code style: black

GSTools-LOGO

Get in Touch!

GH-Discussions Slack-Swung Gitter-GSTools Email Twitter Follow

Youtube Tutorial on GSTools

GSTools Transform 22 tutorial

Purpose

GeoStatTools provides geostatistical tools for various purposes:

  • random field generation
  • simple, ordinary, universal and external drift kriging
  • conditioned field generation
  • incompressible random vector field generation
  • (automated) variogram estimation and fitting
  • directional variogram estimation and modelling
  • data normalization and transformation
  • many readily provided and even user-defined covariance models
  • metric spatio-temporal modelling
  • plotting and exporting routines

Installation

conda

GSTools can be installed via conda on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal:

conda install gstools

In case conda forge is not set up for your system yet, see the easy to follow instructions on conda forge. Using conda, the parallelized version of GSTools should be installed.

pip

GSTools can be installed via pip on Linux, Mac, and Windows. On Windows you can install WinPython to get Python and pip running. Install the package by typing the following command in a command terminal:

pip install gstools

To install the latest development version via pip, see the documentation.

Citation

If you are using GSTools in your publication please cite our paper:

Müller, S., Schüler, L., Zech, A., and Heße, F.: GSTools v1.3: a toolbox for geostatistical modelling in Python, Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, 2022.

You can cite the Zenodo code publication of GSTools by:

Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628

If you want to cite a specific version, have a look at the Zenodo site.

Documentation for GSTools

You can find the documentation under geostat-framework.readthedocs.io.

Tutorials and Examples

The documentation also includes some tutorials, showing the most important use cases of GSTools, which are

The associated python scripts are provided in the examples folder.

Spatial Random Field Generation

The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by Heße et al. 2014.

Examples

Gaussian Covariance Model

This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model.

import gstools as gs
# structured field with a size 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.plot()

Random field

GSTools also provides support for geographic coordinates. This works perfectly well with cartopy.

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import gstools as gs
# define a structured field by latitude and longitude
lat = lon = range(-80, 81)
model = gs.Gaussian(latlon=True, len_scale=777, rescale=gs.EARTH_RADIUS)
srf = gs.SRF(model, seed=12345)
field = srf.structured((lat, lon))
# Orthographic plotting with cartopy
ax = plt.subplot(projection=ccrs.Orthographic(-45, 45))
cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree())
ax.coastlines()
ax.set_global()
plt.colorbar(cont)

lat-lon random field

A similar example but for a three dimensional field is exported to a VTK file, which can be visualized with ParaView or PyVista in Python:

import gstools as gs
# structured field with a size 100x100x100 and a grid-size of 1x1x1
x = y = z = range(100)
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2))
srf = gs.SRF(model)
srf((x, y, z), mesh_type='structured')
srf.vtk_export('3d_field') # Save to a VTK file for ParaView

mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python
mesh.contour(isosurfaces=8).plot()

3d Random field

Estimating and Fitting Variograms

The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function.

All covariance models can be used to fit given variogram data by a simple interface.

Example

This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again.

import numpy as np
import gstools as gs
# generate a synthetic field with an exponential model
x = np.random.RandomState(19970221).rand(1000) * 100.
y = np.random.RandomState(20011012).rand(1000) * 100.
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
# estimate the variogram of the field
bin_center, gamma = gs.vario_estimate((x, y), field)
# fit the variogram with a stable model. (no nugget fitted)
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
# output
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
print(fit_model)

Which gives:

Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09)

Variogram

Kriging and Conditioned Random Fields

An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated.

Example

For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them:

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

# conditioned spatial random field class
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)
# same output positions for all ensemble members
grid_pos = np.linspace(0.0, 15.0, 151)
cond_srf.set_pos(grid_pos)

# seeded ensemble generation
seed = gs.random.MasterRNG(20170519)
for i in range(100):
    field = cond_srf(seed=seed(), store=f"field_{i}")
    plt.plot(grid_pos, field, color="k", alpha=0.1)
plt.scatter(cond_pos, cond_val, color="k")
plt.show()

Conditioned

User Defined Covariance Models

One of the core-features of GSTools is the powerful CovModel class, which allows to easy define covariance models by the user.

Example

Here we re-implement the Gaussian covariance model by defining just a correlation function, which takes a non-dimensional distance h = r/l:

import numpy as np
import gstools as gs
# use CovModel as the base-class
class Gau(gs.CovModel):
    def cor(self, h):
        return np.exp(-h**2)

And that's it! With Gau you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above.

Have a look at the documentation for further information on incorporating optional parameters and optimizations.

Incompressible Vector Field Generation

Using the original Kraichnan method, incompressible random spatial vector fields can be generated.

Example

import numpy as np
import gstools as gs
x = np.arange(100)
y = np.arange(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator='VectorField', seed=19841203)
srf((x, y), mesh_type='structured')
srf.plot()

yielding

vector field

VTK/PyVista Export

After you have created a field, you may want to save it to file, so we provide a handy VTK export routine using the .vtk_export() or you could create a VTK/PyVista dataset for use in Python with to .to_pyvista() method:

import gstools as gs
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.vtk_export("field") # Saves to a VTK file
mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory
mesh.plot()

Which gives a RectilinearGrid VTK file field.vtr or creates a PyVista mesh in memory for immediate 3D plotting in Python.

pyvista export

Requirements:

Optional

Contact

You can contact us via info@geostat-framework.org.

License

LGPLv3 © 2018-2021

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gstools-1.4.1.tar.gz (114.9 kB view details)

Uploaded Source

Built Distributions

gstools-1.4.1-cp311-cp311-win_amd64.whl (306.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

gstools-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

gstools-1.4.1-cp311-cp311-macosx_11_0_arm64.whl (313.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

gstools-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl (336.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

gstools-1.4.1-cp311-cp311-macosx_10_9_universal2.whl (535.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

gstools-1.4.1-cp310-cp310-win_amd64.whl (308.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

gstools-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

gstools-1.4.1-cp310-cp310-macosx_11_0_arm64.whl (319.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

gstools-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl (343.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

gstools-1.4.1-cp310-cp310-macosx_10_9_universal2.whl (547.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

gstools-1.4.1-cp39-cp39-win_amd64.whl (311.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

gstools-1.4.1-cp39-cp39-win32.whl (281.4 kB view details)

Uploaded CPython 3.9 Windows x86

gstools-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

gstools-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

gstools-1.4.1-cp39-cp39-macosx_11_0_arm64.whl (317.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

gstools-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl (340.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

gstools-1.4.1-cp39-cp39-macosx_10_9_universal2.whl (542.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

gstools-1.4.1-cp38-cp38-win_amd64.whl (311.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

gstools-1.4.1-cp38-cp38-win32.whl (281.9 kB view details)

Uploaded CPython 3.8 Windows x86

gstools-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

gstools-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

gstools-1.4.1-cp38-cp38-macosx_11_0_arm64.whl (313.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

gstools-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl (336.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

gstools-1.4.1-cp38-cp38-macosx_10_9_universal2.whl (534.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

gstools-1.4.1-cp37-cp37m-win_amd64.whl (309.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

gstools-1.4.1-cp37-cp37m-win32.whl (278.2 kB view details)

Uploaded CPython 3.7m Windows x86

gstools-1.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

gstools-1.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

gstools-1.4.1-cp37-cp37m-macosx_10_9_x86_64.whl (338.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file gstools-1.4.1.tar.gz.

File metadata

  • Download URL: gstools-1.4.1.tar.gz
  • Upload date:
  • Size: 114.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for gstools-1.4.1.tar.gz
Algorithm Hash digest
SHA256 59db1bfc36fdf05f54a3e0740559f108ca33befb60d8aa8534fd3f163bb491b4
MD5 f614c26f658768eecd247dbb03159b54
BLAKE2b-256 18fb9ac3d888a17109c61645021c797b3c2ea022626f62ee8e4a7351594eb9f8

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gstools-1.4.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 306.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for gstools-1.4.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7967b2c73bff07559af29833c909ebc97cc96a5b37cd834ec9ff0c01599a9f2e
MD5 277bb14a47af92349dc03c1966a9c8a1
BLAKE2b-256 9684ae89e63622e489f67b58f45361a50335f2da445d272f054fdc6049a6dccc

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c21fdead734aa2b326fe76e49c5bf09f5348455c991756784ba6adb6ea1e9138
MD5 be0d06aae10776c0bdae510cf11deacf
BLAKE2b-256 134a3614b99c16d6daf894881837e2d0f825cd2b6e4399431eb7543b91c4d9e3

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d4ca1b88535734fca2830e65953382f17f192a2314c8936ddbe3c958fa39e4b
MD5 46d2765664fcb5a5ab6b10d0ab12edb0
BLAKE2b-256 f31de60a5c5ea5792490511ccabad7ba4c0fd775488e9a489c6844766a3a4f99

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ab951610f50b1f381e7e5ea6d1808e4ee005ad6e64ee2fb7130d2aadaa0ba80
MD5 c1db54e37e2a0b7db6524477650b8899
BLAKE2b-256 603907c50b7cb2d44b4be5fc33d5d7f234e912a0e56df49e567d554ef4dc4205

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 30c679e3cc4a6f4510773401c90e349f426f3b2ec9f3a4c267de241538df2c5e
MD5 69b832d6c0536b19319a14f4509da90f
BLAKE2b-256 3a834cca427acd03a03b7a8bd7cc921f0cea407b940b512f26eed5c3335b01a3

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gstools-1.4.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 308.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for gstools-1.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a45614e3134ac1a22326dfef41a78363b821be2dc74ce716d54f404b5e105cbc
MD5 176a77dda685bc0b0014648006438d81
BLAKE2b-256 733438257cdfc7ae9c9b91316d079a74a88995f8b6c8c56b354fc724201973f4

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 905afe2b816040fe7c0577995a3f12963fb9e7f3387eda3a0e65700d50b1c840
MD5 30ffdc5512c4b188a4b255b9753052f9
BLAKE2b-256 bc571884fa47477d0a9742f6b06b5b605608a7d0b59eb54a083c522faa597815

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71e8cf64ed54ba286a9f63bc3f6bcd1a07d7763a1ff48a178af14b614aa1bc82
MD5 db547cf649d383485b823093f8695517
BLAKE2b-256 5cc262d7aef388d347107aba265ab361c7e8de1918a512c10b01c708677a4075

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2b760c897b70f6015e8ba40e6353104d15e4ec6ed2bf4972f6b2606ac65d246d
MD5 7cc23a8bd33c9dcf6e1f857dc9b68919
BLAKE2b-256 d38d9178e39a368386b3cc3812f16308bfafed7f28bc531795afb796cae90d69

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0744bb558b8e4fdd4e7b04aeb3581432bbc05e656a8902cbc1dd83bbbb09f7e8
MD5 faff87cb980bb580751fc3c6ec4025cc
BLAKE2b-256 8fae745850d113f3ee8dd4e1172df419be50f352f06ae23d307db422a3be2f95

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gstools-1.4.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 311.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for gstools-1.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 516064eca40f4379bb49b5342fa3fac1d9192d45b874199be44cfe2be55d17b3
MD5 78bbcfcd2baae5284912501583205f1b
BLAKE2b-256 831c0b0306df3ad15b882c9814875658d24b0baeb80694bb1e09903ead09efca

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: gstools-1.4.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 281.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for gstools-1.4.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d01dea7cabb78def3721bf4dcc2619b7382a006040579f2b017cf62d9fa7d5ad
MD5 eb4dc12e599f36c4ab7598090dd5fb8e
BLAKE2b-256 7138f01c134d63a460bd22fd7a3aa74b3bce17e2f586d5512c7f69d1f3bfb398

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73bd53d9d788f22e0f9bca4cd4880c516007020c05f0fd5ca1ce969606a000f7
MD5 8a9a815d19c343e242fd35b108f4afe0
BLAKE2b-256 685ef67abfa70501a35896a330089c9ebc3c58ebee4ef4061954aaec5f33efac

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2c37bf13d23efb0cd5aeef3f701fdccf159d78f46d8dad936d92500f7bc4a89b
MD5 750309f9613131fa70129085ef5b134b
BLAKE2b-256 d4da1821e89b8b6e15f15f92fda677995598cffd166663e0fe82005d1c529d9a

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a9cab2ed3f7e20813adbba01145f5897fe76304fafc0bff06ece2d62839f83e
MD5 da5b7fd748a8a21e14aa140605b124b3
BLAKE2b-256 7d941d94b74e69684a999b9c34a91790b37446cd095380f250038fed0af0ad97

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f3af15f26128b3a64a6cf74bcf1c45b38dbfc990767c88ad52cb675672b29961
MD5 70c07abe7edcf12d053145d718c247a7
BLAKE2b-256 4dd4baca2a92214aec7af74d730a3b99304ed700bb070d40ffcc5a2c6ccb35d1

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5f3d30259f94c14f1c5c76c16876806ebca2e98fb531fc76140436f585b37adc
MD5 074869839897bbd2d3ecf68c28f9c737
BLAKE2b-256 0cb3e1776c240e1534560dd069293049f0e3f38b7227ae3f9c052d8a0ad263ef

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gstools-1.4.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 311.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for gstools-1.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 25a6544905ea7fbef5579bff2df5b19bc82a52d88491faaf6d4a750051a1a643
MD5 52fb3e7307cc682ff899a802e641d6b5
BLAKE2b-256 09137d0d5dcf782fb3cd7b104b0ffd518bb02f7355f30f34efb5697462a63b2c

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: gstools-1.4.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 281.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for gstools-1.4.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5118658fc9cc6b618592d8cf88f0938ffc65cf1b3890c631fe89d0c6570dc23a
MD5 935db58e09afe3bf3f992a884a195e8d
BLAKE2b-256 1cd8c1f376d2ccf7aac6a661bf3ec9b70f17582bd745eee6140e7b2cfda0b16b

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e05aacdbc8112719dfe3030c5083dd1340c550ce7e5901d9186349510a682a31
MD5 1d621b5465827671612be78f8b435f3c
BLAKE2b-256 ca66d19b60524f98eb436c501981908d51422d2f45cea97989c101031f5cd631

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 968ae46c58594d9d0f3645f5484602396340ca632939139b86b6106cef9bf411
MD5 df55bd68c6c1199436699b57b8b1571d
BLAKE2b-256 b2ff2057924e9bb93affc5e3515441829ce9d211a7b8525d1ea25cc6c24d22ea

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6e6d801f03937ffbeb72609ffd2b0efb2249c055c7ed880b30dda5820d556f3
MD5 1c90dd6e5100652e3adef3234dbe7d80
BLAKE2b-256 d030fa59f8b639a84b5453bbbc6ea8d6111e27710fe73c071d5b01188ca140a2

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7bdbe4f089fb645b9d3ad24fa413b9bae118503bf4caf967f345d6390224ceda
MD5 da6f71595b786c313d6cccd1852d3237
BLAKE2b-256 7e557b60f80f31e445d523e6907b1bda340b77f78827f206c6eaf5edbfb57dcc

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d8ae605bf4d992a88dd409130b7bd29d9a89fd6b33fe5533f26db3d146ecaf71
MD5 009df89203e7aae2856e97d4f49ecc54
BLAKE2b-256 980084c69cb335211111155ba84fa824b217b210bf68ee99e9ea51bee97f4aa6

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gstools-1.4.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 309.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for gstools-1.4.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7a7fc06a4e5032724ffb75fc5f66591260424ab49624ddbe9221c1eb6f467867
MD5 118c936b296f76d1ac6c2cbe72a64f5b
BLAKE2b-256 071594432df7dcdb897f1f18601b21e130f2bf1be9c32e6f5511d14124f85e45

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: gstools-1.4.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 278.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for gstools-1.4.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b286fd433eb85d5e77e7cae382b7e781514e467512ffcd35ae91a786c15b9a37
MD5 818d59751cba9d5696d0826597faa232
BLAKE2b-256 973b90b06ce86c6472a8f90e6af905f55666dafe4edebe3f12c1f6b96b43e8e1

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29a922e492ef3a4aaddc63820837a84dd071717692e6d59b89a582bfef4661e6
MD5 8891db164c523bd60b18c5b95e1111a0
BLAKE2b-256 c025d5a6f297088476884d7f59f8aa088169db52522b812cd4cfb72eedc7ef53

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 52393f4ffabbf8e160be67416d3d1adae552c7e4c8070b162fc7ed132f460063
MD5 612bc3292a2f3768cbf263abefcf083f
BLAKE2b-256 a38ce9fb919ae5d0d9269f0db7edbc11a718ab9cdd69a3fd4725a68970cdcd45

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.4.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.4.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27ef53ec4d65f351be1c271eb3f8a8b7b8d5f27c27c34a20fd55886fee12a451
MD5 f41417a09da65a3d4196197588dbae14
BLAKE2b-256 c3d0bc1490754e69d9e95c8829f84442590c1b503496ec7dfa4e9e5cab18bb29

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page