Skip to main content

GSTools: A geostatistical toolbox.

Project description

Welcome to GSTools

GMD DOI PyPI version Conda Version Build Status Coverage Status Documentation Status Code style: black

GSTools-LOGO

Get in Touch!

GH-Discussions Slack-Swung Gitter-GSTools Email Twitter Follow

Youtube Tutorial on GSTools

GSTools Transform 22 tutorial

Purpose

GeoStatTools provides geostatistical tools for various purposes:

  • random field generation
  • simple, ordinary, universal and external drift kriging
  • conditioned field generation
  • incompressible random vector field generation
  • (automated) variogram estimation and fitting
  • directional variogram estimation and modelling
  • data normalization and transformation
  • many readily provided and even user-defined covariance models
  • metric spatio-temporal modelling
  • plotting and exporting routines

Installation

conda

GSTools can be installed via conda on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal:

conda install gstools

In case conda forge is not set up for your system yet, see the easy to follow instructions on conda forge. Using conda, the parallelized version of GSTools should be installed.

pip

GSTools can be installed via pip on Linux, Mac, and Windows. On Windows you can install WinPython to get Python and pip running. Install the package by typing the following command in a command terminal:

pip install gstools

To install the latest development version via pip, see the documentation.

Citation

If you are using GSTools in your publication please cite our paper:

Müller, S., Schüler, L., Zech, A., and Heße, F.: GSTools v1.3: a toolbox for geostatistical modelling in Python, Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, 2022.

You can cite the Zenodo code publication of GSTools by:

Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628

If you want to cite a specific version, have a look at the Zenodo site.

Documentation for GSTools

You can find the documentation under geostat-framework.readthedocs.io.

Tutorials and Examples

The documentation also includes some tutorials, showing the most important use cases of GSTools, which are

The associated python scripts are provided in the examples folder.

Spatial Random Field Generation

The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by Heße et al. 2014.

Examples

Gaussian Covariance Model

This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model.

import gstools as gs
# structured field with a size 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.plot()

Random field

GSTools also provides support for geographic coordinates. This works perfectly well with cartopy.

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import gstools as gs
# define a structured field by latitude and longitude
lat = lon = range(-80, 81)
model = gs.Gaussian(latlon=True, len_scale=777, geo_scale=gs.KM_SCALE)
srf = gs.SRF(model, seed=12345)
field = srf.structured((lat, lon))
# Orthographic plotting with cartopy
ax = plt.subplot(projection=ccrs.Orthographic(-45, 45))
cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree())
ax.coastlines()
ax.set_global()
plt.colorbar(cont)

lat-lon random field

A similar example but for a three dimensional field is exported to a VTK file, which can be visualized with ParaView or PyVista in Python:

import gstools as gs
# structured field with a size 100x100x100 and a grid-size of 1x1x1
x = y = z = range(100)
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2))
srf = gs.SRF(model)
srf((x, y, z), mesh_type='structured')
srf.vtk_export('3d_field') # Save to a VTK file for ParaView

mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python
mesh.contour(isosurfaces=8).plot()

3d Random field

Estimating and Fitting Variograms

The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function.

All covariance models can be used to fit given variogram data by a simple interface.

Example

This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again.

import numpy as np
import gstools as gs
# generate a synthetic field with an exponential model
x = np.random.RandomState(19970221).rand(1000) * 100.
y = np.random.RandomState(20011012).rand(1000) * 100.
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
# estimate the variogram of the field
bin_center, gamma = gs.vario_estimate((x, y), field)
# fit the variogram with a stable model. (no nugget fitted)
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
# output
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
print(fit_model)

Which gives:

Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09)

Variogram

Kriging and Conditioned Random Fields

An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated.

Example

For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them:

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

# conditioned spatial random field class
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)
# same output positions for all ensemble members
grid_pos = np.linspace(0.0, 15.0, 151)
cond_srf.set_pos(grid_pos)

# seeded ensemble generation
seed = gs.random.MasterRNG(20170519)
for i in range(100):
    field = cond_srf(seed=seed(), store=f"field_{i}")
    plt.plot(grid_pos, field, color="k", alpha=0.1)
plt.scatter(cond_pos, cond_val, color="k")
plt.show()

Conditioned

User Defined Covariance Models

One of the core-features of GSTools is the powerful CovModel class, which allows to easy define covariance models by the user.

Example

Here we re-implement the Gaussian covariance model by defining just a correlation function, which takes a non-dimensional distance h = r/l:

import numpy as np
import gstools as gs
# use CovModel as the base-class
class Gau(gs.CovModel):
    def cor(self, h):
        return np.exp(-h**2)

And that's it! With Gau you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above.

Have a look at the documentation for further information on incorporating optional parameters and optimizations.

Incompressible Vector Field Generation

Using the original Kraichnan method, incompressible random spatial vector fields can be generated.

Example

import numpy as np
import gstools as gs
x = np.arange(100)
y = np.arange(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator='VectorField', seed=19841203)
srf((x, y), mesh_type='structured')
srf.plot()

yielding

vector field

VTK/PyVista Export

After you have created a field, you may want to save it to file, so we provide a handy VTK export routine using the .vtk_export() or you could create a VTK/PyVista dataset for use in Python with to .to_pyvista() method:

import gstools as gs
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.vtk_export("field") # Saves to a VTK file
mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory
mesh.plot()

Which gives a RectilinearGrid VTK file field.vtr or creates a PyVista mesh in memory for immediate 3D plotting in Python.

pyvista export

Requirements:

Optional

Contact

You can contact us via info@geostat-framework.org.

License

LGPLv3 © 2018-2024

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gstools-1.5.2.tar.gz (118.2 kB view details)

Uploaded Source

Built Distributions

gstools-1.5.2-cp312-cp312-win_amd64.whl (356.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

gstools-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

gstools-1.5.2-cp312-cp312-macosx_11_0_arm64.whl (367.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

gstools-1.5.2-cp312-cp312-macosx_10_9_x86_64.whl (384.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

gstools-1.5.2-cp311-cp311-win_amd64.whl (355.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

gstools-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

gstools-1.5.2-cp311-cp311-macosx_11_0_arm64.whl (364.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

gstools-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl (380.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

gstools-1.5.2-cp310-cp310-win_amd64.whl (355.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

gstools-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

gstools-1.5.2-cp310-cp310-macosx_11_0_arm64.whl (364.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

gstools-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl (380.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

gstools-1.5.2-cp39-cp39-win_amd64.whl (357.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

gstools-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

gstools-1.5.2-cp39-cp39-macosx_11_0_arm64.whl (365.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

gstools-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl (382.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

gstools-1.5.2-cp38-cp38-win_amd64.whl (357.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

gstools-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

gstools-1.5.2-cp38-cp38-macosx_11_0_arm64.whl (365.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

gstools-1.5.2-cp38-cp38-macosx_10_9_x86_64.whl (381.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file gstools-1.5.2.tar.gz.

File metadata

  • Download URL: gstools-1.5.2.tar.gz
  • Upload date:
  • Size: 118.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gstools-1.5.2.tar.gz
Algorithm Hash digest
SHA256 806dc294fec5028bf0399d9c8df30538c39aff2093828d093b9599835a61b802
MD5 51a52787e8336aaa94653ef0be2218ff
BLAKE2b-256 895ae8ef69dd3e2bd43437d8a6a326399a3f8707fe6d1e498d755e31fcb86e2b

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gstools-1.5.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 356.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gstools-1.5.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5324568c5652a64f2557c458663f77ad859d861958a9e6404a8373c02d604454
MD5 62e5378df775bef550d8595cb0f7a502
BLAKE2b-256 328c2c59b44f402dc632133ae7ab37322fb83cbe1c2bd4060e0fa076dcc09386

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1c8b72a07b9310970580c7b911aff68302ae49af0c0fd89ae9794c02897e218
MD5 bd67f3b5763da2b39945b5bd843e12a0
BLAKE2b-256 6c36f3d1e411086dc7efd04f45fdee1d42f7990549c2903c33dd3b885ea2980d

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a4b0bdc7a523d34149dea722b1ae506d5b9c16c4a11106ad2b9701ffa93c5ab
MD5 350479238f3f9b66328f10e1a0ccb39f
BLAKE2b-256 3a81f3f898bbf5c6f974fc3ccaf4dfb0f695d7cc2084da3537aabf0eb404cf2e

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 007b32aa8b7e545bb817d88c102305783d21314a530931715a7d3ae7c2780213
MD5 f49dece8baf33f04e8bfd4dde3c2dbc3
BLAKE2b-256 02e9efdeb8210feecfb7f8961e69364a8c5f7548b2565ba7da04052d541ea89c

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gstools-1.5.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 355.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gstools-1.5.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 70244298a350d0ed55e06e1a7ec9c290d2306f1cad71c43f60c51d8c3f9ecd45
MD5 348fbd17c744d23769c818f862ced0b5
BLAKE2b-256 692baf6c5872f12b4fa6314b7d97011ea77cbee4006df9e736303dd59ba63af8

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 069d2d3dbcc5ce89a7b07293c1dbd450b715aa4f0feebd8b7a4af7f2aeec6fd9
MD5 efe95f682c42e6062358f2e21b3f7aff
BLAKE2b-256 80bc43ed3ede447c1fa268354b72eb5fa8095c6198f1b1efd8b2fb372bb7b929

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09c4b2e2425c0327e90a6c9d0a54f826968a3868f051025c991171793e5f1a42
MD5 8c24644fc515f9e73b29cf0156d2f1ec
BLAKE2b-256 a8a78bcc49b9b6cb93bfbe6299605e512f909cbbc133bd69eb2fc12474eae6ad

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2eaf1bb138001b76f8b0a7563a6af5859f51d764ba59ac8aca8a352d1201c6ff
MD5 7dcd766fc620711be507b8d02c2c7df8
BLAKE2b-256 8947de9019e40367b69c569265601fc71d2f005a4de300865d485a972bd94578

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gstools-1.5.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 355.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gstools-1.5.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9887df3e206ba80f1c397a7fa756570dfb1c80816d946c19a8af55e8cfb51e40
MD5 1919c79e2380b59e310aff7ecf8a78da
BLAKE2b-256 3f379c1c3a80f2c671ac15f687588a20ba29ba8e4162dd8f8d3a52b146b9171f

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e82aa23cfbbd80175cafc938dd50a98646596b446d3972133235432f4fc4c7d1
MD5 0c44fd14703c027d3399f8a254a214e3
BLAKE2b-256 ed127273a2eb325ad65f0bc663584fb32348a3d1f7ff7b89373883ffd916becc

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 30b018ddee982fee5b58a4245ef52bcfa034ddcb14db8e3a28c636ad8bb27902
MD5 8570f1b11266ecda740a65ebebdba614
BLAKE2b-256 5dc5bf02aa7304ae22d6b478aac22db896c3364286f87f9637b8c3ecb0ef5878

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae201fb96848cf77f3089b856213a87d4d02dc2dd1c732d283fd66b3ae0bcb2d
MD5 5bf0f33e1e361e0dc9693330c7e6a0e5
BLAKE2b-256 3e8cdead9bd411f7ece0a2e11d1003e503d53a8b02943f77e121461375a875c1

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gstools-1.5.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 357.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gstools-1.5.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d8be581bc023c093333b87fe9a12f7f9adc6381720ef5394156c7c1bf6401b0f
MD5 27864d98f7eb3a06c0a083232d7983f8
BLAKE2b-256 8c79079d50f4da9110b1e678f8d312940db40af6c2eb94a6ac74ec6b4580d20d

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7ead82d837baa81347d9e741af0d0a63e66132a329979c095b0d2b882aab465
MD5 978a6bc4b415777a27824d68a2e45381
BLAKE2b-256 be0e419c39b61775a890508f3b0f33bdb757bd8b79a1b0c338f782d8e81d03cb

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c56b4d06122c29189ccb7715fd1d776f607775fa071f80804ef33817c3eb8d24
MD5 1264a02f09f00b788270082441116837
BLAKE2b-256 ffbbec500991d5d6dbd458dc15db9a2fe82181a20908cf76c4da4ac31efdb7b1

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c5c4498a6f10deee50ccdddf4c2ddf0679652130cace2bc5e470059604c6308
MD5 2d400ff18a74ca4314a58fb2fa978906
BLAKE2b-256 fcaab9b22a1ae5fa6e40305dd32c3ff88068724c8a41962c258c0a5594c5f955

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gstools-1.5.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 357.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for gstools-1.5.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2e581320c1b88cea64e22175a04bee3eb19ff201c3d87314c457668335bbc76b
MD5 afc482c09194f3fd4ac11abcb8a1a957
BLAKE2b-256 485e67d9ec879e9c4ce88a7f5d2cf3cf0419b390f20e81569e3684908e71c5b7

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4fd829b5978b02a7d956b09e3c25772f83a72360c6d993f71b33841e6901ce6f
MD5 d5c2ad8e724756dd95d2fc0d048e9aaa
BLAKE2b-256 262fdae78aa462cddd9c809a76c396135efa5cd41d93546dd0d8b1a9a00a0ce6

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6bb42ad61eb9d1d984327bc649dd98be68d9e1b46cb137018905e1de2d9d34c4
MD5 b5ed7e8fd840c33ab4b70cbd1917ec33
BLAKE2b-256 af76bc4b95a405e1cac1146482604102342bae9724bd38146bcd856770106ca3

See more details on using hashes here.

Provenance

File details

Details for the file gstools-1.5.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.5.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 68b1db3f0ace0132e437f8b5c40c31bac209b23572592d914ebb806a880dc3ed
MD5 a235ebca88f9af5a8e043f07a0b5f241
BLAKE2b-256 9f52fa82721f5075647a76d47a55e571caa560d1accc9754b215b31e0e7c40ce

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page