Skip to main content

Gibbs SeaWater Oceanographic Package of TEOS-10

Project description

python gsw
==========

[![Build](https://badge.fury.io/py/gsw.png)](http://badge.fury.io/py/gsw)
[![Build](https://api.travis-ci.org/ocefpaf/python-gsw.png?branch=master)](https://travis-ci.org/ocefpaf/python-gsw)
[![Downloads](https://pypip.in/d/gsw/badge.png)](https://crate.io/packages/gsw/)


Python implementation of the Thermodynamic Equation Of Seawater - 2010 (TEOS-10)
--------------------------------------------------------------------------------

For more information go to:
http://www.teos-10.org/


gsw vs. csiro
-------------

This table shows some function names in the gibbs library and the corresponding function names in the csiro library.

| **Variable** | **SeaWater (EOS 80)** | **Gibbs SeaWater (GSW TEOS 10)** |
|:---------------------------------------------------:|:-----------------------------------------------:|:-----------------------------------------------------:|
| Absolute Salinity | NA | gsw.SA_from_SP(SP,p,long,lat) |
| Conservative Temperature | NA | gsw.CT_from_t(SA,t,p) |
| density (i.e. in situ density) | sw.dens(SP,t,p) | gsw.rho_CT(SA,CT,p), or gsw.rho(SA,t,p) |
| potential density | sw.pden(SP,t,p,pr) | gsw.rho_CT(SA,CT,pr) |
| potential temperature | sw.ptmp(SP,t,p,pr) | gsw.pt_from_t(SA,t,p,pr) |
| $\sigma_0$, using $\theta_o$ = sw.ptmp(SP,t,p,0) | sw.dens(SP, $\theta_o$, 0) -1000 kg m$^{-3}$ | gsw.sigma0_CT(SA,CT) |
| $\sigma_2$, using $\theta_2$ = sw.ptmp(SP,t,p,2000) | sw.dens(SP,$\theta_2$, 2000) -1000 kg m$^{-3}$ | gsw.sigma2_CT(SA,CT) |
| $\sigma_4$, using $\theta_4$ = sw.ptmp(SP,t,p,2000) | sw.dens(SP,$\theta_4$, 4000) -1000 kg m$^{-3}$ | gsw.sigma2_CT(SA,CT) |
| specific volume anomaly | sw.svan(SP,t,p) | gsw.specvol_anom_CT(SA,CT,p) |
| dynamic height anomaly | -sw.gpan(SP,t,p) | gsw.geo_strf_dyn_height(SA,CT,p,delta_p,interp_style) |
| geostrophic velocity | sw.gvel(ga,lat,long) | gsw.geostrophic_velocity(geo_str,long,lat,p) |
| N$^2$ | sw.bfrq(SP,t,p,lat) | gsw.Nsquared(SA,CT,p,lat) |
| pressure from height (SW uses depth, not height) | sw.pres(-z,lat) | gsw.p_from_z(z,lat) |
| height from pressure (SW outputs depth, not height) | z = -sw.dpth(p,lat) | gsw.z_from_p(p,lat) |
| in situ temperature from pt | sw.temp(SP,pt,p,pr) | gsw.pt_from_t(SA,pt,pr,p) |
| sound speed | sw.svel(SP,t,p) | gsw.sound_speed(SA,t,p) |
| isobaric heat capacity | sw.cp(SP,t,p) | gsw.cp(SA,t,p) |
| adiabatic lapse rate* | sw.adtg(SP,t,p) | gsw.adiabatic_lapse_rate(SA,t,p) |
| SP from cndr, (PSS 78) | sw.salt(cndr,t,p) | gsw.SP_from_cndr(cndr,t,p) |
| cndr from SP, (PSS 78) | sw.cndr(SP,t,p) | gsw.cndr_from_SP(SP,t,p) |
| distance | sw.dist(lat,long,units) | gsw.distance(long,lat,p) |
| gravitational acceleration | sw.g(lat,z) | gsw.grav(lat,p) |
| Coriolis parameter | sw.f(lat) | gsw.f(lat) |

Note that the SW and GSW functions output the adiabatic lapse rate in different units, being K (dbar)$^{-1}$ and K Pa$^{-1}$
respectively.


Authors
-------
* Bjørn Ådlandsvik
* Eric Firing
* Filipe Fernandes

Thanks
------

* Bjørn Ådlandsvik - Testing unit and several bug fixes.
* Eric Firing - Support for masked arrays, re-write of _delta_SA.
* Trevor J. McDougall (and all of SCOR/IAPSO WG127) for making available the Matlab version of this software.

Acknowledgments
---------------

* SCOR/IAPSO WG127.


version 3.0.2
==============
* New repository with TEOS10 code (version 3 only).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gsw-3.0.2.tar.gz (2.8 MB view details)

Uploaded Source

File details

Details for the file gsw-3.0.2.tar.gz.

File metadata

  • Download URL: gsw-3.0.2.tar.gz
  • Upload date:
  • Size: 2.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for gsw-3.0.2.tar.gz
Algorithm Hash digest
SHA256 9dc9937bc3504ce3ecdb9409457a4562e532fbc132bd73573f43304a93d8ebde
MD5 b120f467cecc6572569511114bf7d337
BLAKE2b-256 ce0d7e32b6111b7c85136e53012ebcd867346b2c1833d3599917d029dae1ec4f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page