Skip to main content

Genetics with Numpy

Project description

Tests codecov Docs PyPI version

gumpy

Genetics with Numpy

Installation

git clone https://github.com/oxfordmmm/gumpy
cd gumpy
pip install .

Documentation

https://oxfordmmm.github.io/gumpy/

Testing

A suite of tests can be run from a terminal:

python -m pytest --cov=gumpy -vv

Usage

Parse a genbank file

Genome objects can be created by passing a filename of a genbank file

from gumpy import Genome

g = Genome("filename.gbk")

Parse a VCF file

VCFFile objects can be created by passing a filename of a vcf file

from gumpy import VCFFile

vcf = VCFFile("filename.vcf")

Apply a VCF file to a reference genome

The mutations defined in a vcf file can be applied to a reference genome to produce a new Genome object containing the changes detailed in the vcf.

If a contig is set within the vcf, the length of the contig should match the length of the genome. Otherwise, if the vcf details changes within the genome range, they will be made.

from gumpy import Genome, VCFFile

reference_genome = Genome("reference.gbk")
vcf = VCFFile("filename.vcf")

resultant_genome = reference_genome + vcf

Genome level comparisons

There are two different methods for comparing changes. One can quickly check for changes which are caused by a given VCF file. The other can check for changes between two genome. The latter is therefore suited best for comparisons in which either both genomes are mutated, or the VCF file(s) are not available. The former is best suited for cases where changes caused by a VCF want to be determined, but finding gene-level differences will require rebuilding the Gene objects, which can be time consuming.

Compare genomes

Two genomes of the same length can be easily compared, including equality and changes between the two. Best suited to cases where two mutated genomes are to be compared.

from gumpy import Genome, GenomeDifference

g1 = Genome("filename1.gbk")
g2 = Genome("filename2.gbk")

diff = g2 - g1 #Genome.difference returns a GenomeDifference object
print(diff.snp_distance) #SNP distance between the two genomes
print(diff.variants) #Array of variants (SNPs/INDELs) of the differences between g2 and g1

Gene level comparisons

When a Genome object is instanciated, it is populated with Gene objects for each gene detailed in the genbank file. These genes can also be compared. Gene differences can be found through direct comparison of Gene objects, or systematically through the gene_differences() method of GenomeDifference.

from gumpy import Genome, Gene

g1 = Genome("filename1.gbk")
g2 = Genome("filename2.gbk")

#Get the Gene objects for the gene "gene1_name" from both Genomes
g1_gene1 = g1.build_gene["gene1_name"]
g2_gene1 = g2.build_gene["gene1_name"]

g1_gene1 == g2_gene1 #Equality check of the two genes
diff= g1_gene1 - g2_gene1 #Returns a GeneDifference object
diff.mutations #List of mutations in GARC describing the variation between the two genes

Save and load Genome objects

Due to how long it takes to create a Genome object, it may be beneficial to save the object to disk. The reccomendation is to utilise the pickle module to do so, but due to the security implications of this, do so at your own risk! An example is below:

import pickle

import gumpy

#Load genome
g = gumpy.Genome("filename.gbk")

#Save genome
pickle.dump(g, open("filename.pkl", "wb"))

#Load genome
g2 = pickle.load(open("filename.pkl", "rb"))

g == g2 #True

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gumpy-1.2.0.tar.gz (43.0 kB view details)

Uploaded Source

Built Distribution

gumpy-1.2.0-py3-none-any.whl (44.8 kB view details)

Uploaded Python 3

File details

Details for the file gumpy-1.2.0.tar.gz.

File metadata

  • Download URL: gumpy-1.2.0.tar.gz
  • Upload date:
  • Size: 43.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for gumpy-1.2.0.tar.gz
Algorithm Hash digest
SHA256 6cc05173301012a1f3dc12f800b9e07727db053ba93b0c81be898a998578c731
MD5 b7946510f41992e902aff78eebbb46f5
BLAKE2b-256 244690eab1547e7f2a0c0fb361fc02bd943178e5ade15205789bdaaebe174c1a

See more details on using hashes here.

File details

Details for the file gumpy-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: gumpy-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 44.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for gumpy-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 17fce164d24a3bef6a90133f569405887ab2d507da597679aa351b4379c016a1
MD5 4edfc472cd50dc25c78fd4130b2f8318
BLAKE2b-256 9d869b8069e17bdd3dcd00821953245e9352b99a428a3178e4caa23e9d5933cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page