Skip to main content

A fast tool to calculate Hamming distances

Project description

A small C++ tool to calculate pairwise distances between gene sequences given in fasta format.

DOI pypi releases python versions

Python interface

To use the Python interface, you should install it from PyPI:

python -m pip install hammingdist

Then, you can e.g. use it in the following way from Python:

import hammingdist

# To see the different optional arguments available:
help(hammingdist.from_fasta)

# To import all sequences from a fasta file
data = hammingdist.from_fasta("example.fasta")

# To import only the first 100 sequences from a fasta file
data = hammingdist.from_fasta("example.fasta", n=100)

# To import all sequences and remove any duplicates
data = hammingdist.from_fasta("example.fasta", remove_duplicates=True)

# To import all sequences from a fasta file, also treating 'X' as a valid character
data = hammingdist.from_fasta("example.fasta", include_x=True)

# The distance data can be accessed point-wise, though looping over all distances might be quite inefficient
print(data[14,42])

# The data can be written to disk in csv format (default `distance` Ripser format) and retrieved:
data.dump("backup.csv")
retrieval = hammingdist.from_csv("backup.csv")

# It can also be written in lower triangular format (comma-delimited row-major, `lower-distance` Ripser format):
data.dump_lower_triangular("lt.txt")
retrieval = hammingdist.from_lower_triangular("lt.txt")

# If the `remove_duplicates` option was used, the sequence indices can also be written.
# For each input sequence, this prints the corresponding index in the output:
data.dump_sequence_indices("indices.txt")

# Finally, we can pass the data as a list of strings in Python:
data = hammingdist.from_stringlist(["ACGTACGT", "ACGTAGGT", "ATTTACGT"])

The Python package is currently built without OpenMP support, but this can be changed upon request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

hammingdist-0.11.0-pp37-pypy37_pp73-win_amd64.whl (88.0 kB view details)

Uploaded PyPy Windows x86-64

hammingdist-0.11.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (116.3 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

hammingdist-0.11.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (124.4 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

hammingdist-0.11.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (83.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hammingdist-0.11.0-cp39-cp39-win_amd64.whl (88.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

hammingdist-0.11.0-cp39-cp39-win32.whl (77.3 kB view details)

Uploaded CPython 3.9 Windows x86

hammingdist-0.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (116.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

hammingdist-0.11.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (124.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

hammingdist-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl (84.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

hammingdist-0.11.0-cp38-cp38-win_amd64.whl (88.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

hammingdist-0.11.0-cp38-cp38-win32.whl (77.2 kB view details)

Uploaded CPython 3.8 Windows x86

hammingdist-0.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (116.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

hammingdist-0.11.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (124.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

hammingdist-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl (83.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

hammingdist-0.11.0-cp37-cp37m-win_amd64.whl (89.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

hammingdist-0.11.0-cp37-cp37m-win32.whl (78.3 kB view details)

Uploaded CPython 3.7m Windows x86

hammingdist-0.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (117.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

hammingdist-0.11.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (126.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

hammingdist-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl (83.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

hammingdist-0.11.0-cp36-cp36m-win_amd64.whl (89.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

hammingdist-0.11.0-cp36-cp36m-win32.whl (78.3 kB view details)

Uploaded CPython 3.6m Windows x86

hammingdist-0.11.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (117.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

hammingdist-0.11.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (125.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

hammingdist-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl (83.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file hammingdist-0.11.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.11.0-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 88.0 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1eadfb9294497bd65b047230af7e6efd83ad4dca9507e63a3be7b6af3940e1e1
MD5 981ceb91180577c4974eb94ec2c16a46
BLAKE2b-256 1f10ab2c53aa43251e515ae1f501b5e16c385993aec4271c8bda2f4759730746

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.11.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4f3796e3cfc14d5c4135753369f2b13c14d19d7bd5b2d3ae5fc017acdcc3be93
MD5 bab0a4285bcaa0c3994e634c75555d14
BLAKE2b-256 45066072e07d570710cea12b343dbd7b783c0a5a9ea493ea795a10452cee4028

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hammingdist-0.11.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5efdb59c7cfed6cbff2017ee498fc2203432fc4a6c959683680404db02025404
MD5 6972b8d529535f5e8e9f70a1b0adae64
BLAKE2b-256 32344cc806e66b3126fbdc9861e74b2d97bddca969181a9ad430b70fbb9ea3d2

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.11.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 83.3 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba0d6ff95130b0c8c29e67a0d72bf3f660f86b2646fdaf0f2bd69f83e1d1ee3a
MD5 0134d77360e5aa20035067cc6caa60b4
BLAKE2b-256 868cac41eb7e62445660cd2af7fceecc316590a0f27eef2330aca26ec702f910

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 88.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7aad604c77cfeae6bc82dfd1817a884639080f8c940a4e4970cf516867a898a2
MD5 1ede0af27c201f9b6147d732e47b8936
BLAKE2b-256 ce3e48c034c58c8895d439ca7000f672e1da060ac4a9dd46eb8bfde895603aa5

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 77.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1a7818858d4c1392b41eea99ff6fdbd6519adb5dea43eae5b1201a2ee92d78f5
MD5 bc95e5f9e2b1367dc4c83a21c302c8b8
BLAKE2b-256 19a57620ba64d4ab460107d7e689d79e1c698e74605b338970cc8a044e120a8e

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 55ba1e39c52d3e1eeea02b02ccb7c504eb54c132e9ee033df6b88f204443d39b
MD5 c1ea5aa067612e297686cd962321b65a
BLAKE2b-256 f0c45bf4aff8c238670544aca887a08bbada660c624aecb729cf488c0fc7e154

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hammingdist-0.11.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 394edb6efdf460e89241b7901f82b221e274cd86d78d361d17c2ea639f02cde9
MD5 1800b044b192676684c89b16ca8eae55
BLAKE2b-256 3f0b98b256217cf95716e4c27c611c6da2ffe876b371febc2d1a74a73ac34984

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 84.0 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c3ad5425650780590bc63e7fde8a12bb997068b1c20e6070793b5f16fb46d81
MD5 7d1c4bd5049afa72550ee39a7a75fc06
BLAKE2b-256 321eca4f38ed7c4a7437ab6f528a517745a537b039fd0c8cda3590c87dcf1b9a

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 88.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f7c9301de3c804ea67f9b655cd08d63ce1898e61b735b83697c14f24342fe9de
MD5 99a9090dc48511762ce7af6c5f788d36
BLAKE2b-256 cb15a7dd08b67246ecf958c86a6e7f03df16fb8d28c3dc08688e589061fc248d

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 77.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 20da85c516c49f5e6206af83c2306adebfd366209420da2ad2387f17e8e775ee
MD5 21af50ac46723c8bc82ddb2e5f3f2137
BLAKE2b-256 53a88a81fb092c4116eec8a027763a070363d6d0acdf763ad93598ba77f050f6

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6336602e5c1b5b734d4a187fb768266d14fb815934eccd7886eeddbbfa10c122
MD5 14e18ad6ebb6ccb86904d7f1edbb7b1e
BLAKE2b-256 4a568c6210f0281e51a4f9d48e84d99c11fa79fbc89fb05f257559aaf11668a8

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hammingdist-0.11.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2c84d16f1d68c8e42f068fe8023ede08e27755a019c3772f514028936749609c
MD5 a9b8d16f733072e5d8e829b6846458cc
BLAKE2b-256 c890f97d0590a58c9123bb1bcb59544d14609046aa1ef3916504afb162364c5f

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 83.9 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27bfaec6e14a59eaf39b98372b983631a78e072ea697e660457fe9e78a3d5ff2
MD5 10b7b7e0f3da0fbfb973e8e618342e8e
BLAKE2b-256 b2fcf0573e6e52cbbc6af2c1feebdbb255cafd8949968ce0f33621382b1e8a40

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 89.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b380e4ed232e52e9772e7bfb1ce2a1bde6b0d255cf2c812a118e4d3d78fd5dc2
MD5 19535ffd617d53519a51036b522be46b
BLAKE2b-256 5bbf4a2ee26b3a8d5b12c1ea8f9624be0d91ec92e8642492b328d6dcd1ec4fbb

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 78.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5be0c1423f757f4b3510f06f28012a927c26001699a4005022de8e180fc3e25d
MD5 0eba69b20bfd522553428d1b37c1de68
BLAKE2b-256 1dd5d64af290a1c1b1396966d57660a36526ba9b445ccb7243dace3fa23c53f1

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a9bdc0faadfce56287709d26343bedde00cbf7c969406aad26ac514ec60a2897
MD5 186690d31976ccb4611d31b895cc73b9
BLAKE2b-256 e62d8ed479c2c6bf70339f7ba9d9509748f4f53754d4281777d337237bc9ef7c

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hammingdist-0.11.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d4627c83a72dbf742dbd97cf4079b52f985364282c24f33e9cfd73bc2a4a541d
MD5 9d8d1b698244baac5745245ed09d404d
BLAKE2b-256 2a6b434cc2118b401b2e621d57bc01ddc923be5f5a43561e2938534b3ba0988e

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 83.3 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a54c93cbc23b9342c8c0c6a29df5e4dda9528d237d0d2b1922862a412c63cb4f
MD5 da5b18de74d08325fd0f6a01821463d8
BLAKE2b-256 22a434d45658e854356b1c3d361a46438f10a57afc41bc156050c1145065befa

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 89.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bf8efffc1a760abffd62bd3718564f1a1075ef17eb28acb187482c8ace5f992b
MD5 425258a1059bc7c8a844310f09d62b0d
BLAKE2b-256 3d5fa8c798b65d5e7019410640eefe27836b04093a05812c59b018944522b513

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 78.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c228db9d1ad750f86108d5e1f824f56e2039ddde510f8930c208aa3cafa4954d
MD5 d60befd0450884f1b7a0b6c65cd7bc78
BLAKE2b-256 ccb84124b7f3cabcd916ba09c69c88326d1f4591946dc4b2ea992156c2027811

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.11.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4bfed27cf0606c4c41a8651c658a9764e35f9af9e08ee68f8ca855f42be191e6
MD5 b6064d805c1e1d35190ca1d8b85fa87e
BLAKE2b-256 058168ed61e6d31a7a58867bfe64c9d00297fee825550fbe3364aa7b05806766

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hammingdist-0.11.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 37a8ce16e6303d83dadebd35806592cdd545cbd90205e3d4a75405cc689817d3
MD5 aa625ef11c5621101ac843c38102b3aa
BLAKE2b-256 d95d4d160c617534f69c2e230b4e04a34367d547c69cbcb0b100cfb6fabdcdec

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 83.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for hammingdist-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1a01adad051e3d430d946dd0a69188e62f83d8ce58fc611a7357b86e7add3925
MD5 752c728c06080b4f90460c679fc171d2
BLAKE2b-256 98b1e77f49f1f8567ecf5f93cedeae78bd2428ed853a458c0b6fe9371816795d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page