Skip to main content

A fast tool to calculate Hamming distances

Project description

A small C++ tool to calculate pairwise distances between gene sequences given in fasta format.

DOI pypi releases python versions

Python interface

To use the Python interface, you should install it from PyPI:

python -m pip install hammingdist

Distances matrix

Then, you can e.g. use it in the following way from Python:

import hammingdist

# To see the different optional arguments available:
help(hammingdist.from_fasta)

# To import all sequences from a fasta file
data = hammingdist.from_fasta("example.fasta")

# To import only the first 100 sequences from a fasta file
data = hammingdist.from_fasta("example.fasta", n=100)

# To import all sequences and remove any duplicates
data = hammingdist.from_fasta("example.fasta", remove_duplicates=True)

# To import all sequences from a fasta file, also treating 'X' as a valid character
data = hammingdist.from_fasta("example.fasta", include_x=True)

# The distance data can be accessed point-wise, though looping over all distances might be quite inefficient
print(data[14,42])

# The data can be written to disk in csv format (default `distance` Ripser format) and retrieved:
data.dump("backup.csv")
retrieval = hammingdist.from_csv("backup.csv")

# It can also be written in lower triangular format (comma-delimited row-major, `lower-distance` Ripser format):
data.dump_lower_triangular("lt.txt")
retrieval = hammingdist.from_lower_triangular("lt.txt")

# If the `remove_duplicates` option was used, the sequence indices can also be written.
# For each input sequence, this prints the corresponding index in the output:
data.dump_sequence_indices("indices.txt")

# Finally, we can pass the data as a list of strings in Python:
data = hammingdist.from_stringlist(["ACGTACGT", "ACGTAGGT", "ATTTACGT"])

Distances from reference sequence

The distance of each sequence in a fasta file from a given reference sequence can be calculated using:

import hammingdist

distances = hammingdist.fasta_reference_distances(sequence, fasta_file, include_x=True)

This function returns a numpy array that contains the distance of each sequence from the reference sequence.

You can also calculate the distance between two individual sequences:

import hammingdist

distance = hammingdist.distance("ACGTX", "AAGTX", include_x=True)

OpenMP on linux

The latest versions of hammingdist on linux are now built with OpenMP (multithreading) support. If this causes any issues, you can install a previous version of hammingdist without OpenMP support:

pip install hammingdist==0.11.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

hammingdist-0.13.0-pp38-pypy38_pp73-win_amd64.whl (186.5 kB view details)

Uploaded PyPy Windows x86-64

hammingdist-0.13.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (325.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hammingdist-0.13.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (182.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hammingdist-0.13.0-pp37-pypy37_pp73-win_amd64.whl (187.4 kB view details)

Uploaded PyPy Windows x86-64

hammingdist-0.13.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (328.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hammingdist-0.13.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (90.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hammingdist-0.13.0-cp310-cp310-win_amd64.whl (95.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

hammingdist-0.13.0-cp310-cp310-win32.whl (82.9 kB view details)

Uploaded CPython 3.10 Windows x86

hammingdist-0.13.0-cp310-cp310-musllinux_1_1_x86_64.whl (723.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

hammingdist-0.13.0-cp310-cp310-musllinux_1_1_i686.whl (787.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

hammingdist-0.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (198.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

hammingdist-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl (91.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

hammingdist-0.13.0-cp39-cp39-win_amd64.whl (94.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

hammingdist-0.13.0-cp39-cp39-win32.whl (83.0 kB view details)

Uploaded CPython 3.9 Windows x86

hammingdist-0.13.0-cp39-cp39-musllinux_1_1_x86_64.whl (723.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

hammingdist-0.13.0-cp39-cp39-musllinux_1_1_i686.whl (787.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

hammingdist-0.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (198.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

hammingdist-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl (91.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

hammingdist-0.13.0-cp38-cp38-win_amd64.whl (95.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

hammingdist-0.13.0-cp38-cp38-win32.whl (82.9 kB view details)

Uploaded CPython 3.8 Windows x86

hammingdist-0.13.0-cp38-cp38-musllinux_1_1_x86_64.whl (723.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

hammingdist-0.13.0-cp38-cp38-musllinux_1_1_i686.whl (787.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

hammingdist-0.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (198.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

hammingdist-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl (91.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

hammingdist-0.13.0-cp37-cp37m-win_amd64.whl (96.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

hammingdist-0.13.0-cp37-cp37m-win32.whl (83.4 kB view details)

Uploaded CPython 3.7m Windows x86

hammingdist-0.13.0-cp37-cp37m-musllinux_1_1_x86_64.whl (726.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

hammingdist-0.13.0-cp37-cp37m-musllinux_1_1_i686.whl (792.8 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

hammingdist-0.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (201.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

hammingdist-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl (90.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

hammingdist-0.13.0-cp36-cp36m-win_amd64.whl (96.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

hammingdist-0.13.0-cp36-cp36m-win32.whl (83.4 kB view details)

Uploaded CPython 3.6m Windows x86

hammingdist-0.13.0-cp36-cp36m-musllinux_1_1_x86_64.whl (726.2 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

hammingdist-0.13.0-cp36-cp36m-musllinux_1_1_i686.whl (792.7 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

hammingdist-0.13.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (201.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

hammingdist-0.13.0-cp36-cp36m-macosx_10_9_x86_64.whl (90.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file hammingdist-0.13.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 186.5 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 247348a85667a9f1a6e4e9b1466f6f4a289f4ed2b8cf8ecb888c10b9675e0c91
MD5 83351b063b5455ff298fdda80ad7d5f6
BLAKE2b-256 de15cda29089728e5a0ed44d1095f17c338b7fec0b9e064941ab5d6d3bd3a815

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.13.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29efb804cd029efe7f79f42f8b24ca43f5bcbdc1a70f8da0a3947b754dab4e02
MD5 cd35d687bb2e5be16b7882756fd729f4
BLAKE2b-256 8492bd5d6df355edd0cb47a0642ce4e2459617051197c5f6854ef321c838c7bd

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 182.0 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2830a369d049dfb4e588a57774239d846904812d28e7c59deed9dd4a371e0b22
MD5 6965eb5009046c3ccb2dd73c8927e132
BLAKE2b-256 9f568e76002e6b62648252239b393bc99a598684e75f46f945f5eec51082f0bf

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 187.4 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d87430f52769eedb971dacc54cc59c09c240ff81de75cffcc3191bf9c34b83d5
MD5 f32e00705f71b5e08c7cafe27771978a
BLAKE2b-256 0e1546cbfceeb64f824b31b80b592216cfe5ef37138fc1936b2de71d08504d8c

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.13.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d051cd2e2dc1121ed950f25e7075297211e3c46ee76cfd762525dfda2c11039
MD5 b351272437fc398c21edc703d1ac994d
BLAKE2b-256 c0f396dff1739e21fc3aa009eae50b6df77c339d7a6a48036365b95dcbb43c27

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 90.4 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6bb2b3f912e103f616adccc97f861b4c53b6a74a95269637aada71f2442ebf66
MD5 cf23930ce3445994d4e537b1f8afb40a
BLAKE2b-256 79b4f9d64e76e372da68b933090baedccb736d1b1f58309288ed5a3438b7a992

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 95.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 772a9decd15519578b395d3d467d652edc90ddc1bff6938ed593543f896cc828
MD5 5ab5c6bcc64644a1b3fdd427cad192e9
BLAKE2b-256 39de7efdd2bf38c2ef7122b65e73ada9918597e316bcb7667fac3669ef7d712c

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 82.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3ff6d4398ee956ce09f1fda81c7ce6ab2126d487175bbfe7e8d7f334bb9895ee
MD5 0dad058c4190fefe43a3fbf970571f6e
BLAKE2b-256 385da367512cdf43d98f14ca470c715d70b9a76917cde785108c9d24b840c387

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 723.3 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e14fd28d4f96ee1ee53693fe05f270cb61a522d8b1e1fec30171012842d546b8
MD5 6d0aab5a528674c527c4406fa88daf7c
BLAKE2b-256 5f99804c564768827ab8fb6837a7a1fab6e0ea2a10a7b941646a8e1bf4e2b275

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 787.2 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 69f02707b8e33a7f4e57331a9913cd350a5cc26f33b09fd67af6198a943587be
MD5 47cc530c92bf6d7a656d177687ff6bf5
BLAKE2b-256 01f0acd245c02ce2a31348180498ee962c9a0d7efc595d6dff6af00f80b3255e

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb445d4c2b82aace75f7a5c79b0f25e18a616a8692f8d36f024d81b528eac3ae
MD5 c062a3e956c5baf411232d6cc16616a2
BLAKE2b-256 bc9c19edb574ef50dd3c4fae2011845f0588de63698e6ceabbee2ec58692c8f4

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 91.0 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9cb7e0006b9bb446c2b47d02a3bd7ba1be95fd7b3d456f60d83ad7c172901e8b
MD5 d0479900221a5c9eca96c0a21fb6c275
BLAKE2b-256 1c2798869c0a3ec5b20457d31eb896a3e2297cb3f220cb8fd9b45fa625edd2cd

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 94.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e35d09ff0b4f8ead1f56fc1f26764cacd2292dfdbd4730de5ed89a510bde0875
MD5 7085f403e97abc4936f9fd3b84d4d897
BLAKE2b-256 8c83805c2033cc980dd04e1112913790f454c1adebce0230ce08a8a695c0813f

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 83.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0f86f4f6bc714b1098ce19e52d36ef90339ec2dd647110d0471720f6183788ee
MD5 bd485b264d3779ad7d0743a96de5a1f9
BLAKE2b-256 c3d022b9532359fed8244a23de0c0a4e5530397407c3f5cac4f6f183eb141c07

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 723.5 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5cdc3af5faf6402e5c631e42dfd2dbef7008c1b7c0f4899af4f7a4142f5f09bb
MD5 d3813d484618e89963c813f32fc2f71c
BLAKE2b-256 d25d4117fa6cb02241d24e300c6ed45b274fcd90899c6a36d26cc271dd1a97cf

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 787.5 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5e4291eeef8a575ec19895764710768ee425c3a3f92be38fddbf19fb0428833c
MD5 cb66b8d3f45c84a224bbe858ad365e35
BLAKE2b-256 d601b570af82682c1eb69f607c3d51c87a388f8993988b070ab8ccb4f5ffb93d

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c0df8f3619c2ba25bf462c455e47308085e1865afe8b1d4b956547cb2819881
MD5 1a8ba64c7e29cebee7508592beb753b5
BLAKE2b-256 cedc06985f6bd2e106f145ef21474a31db468d04525d9824bd9eabbe1d0a9eda

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 91.1 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 785eadd4d2e0533bf5e82a5b6fb948a2786d9a42e2fecf01e1e0f34c09ada11b
MD5 10e321b975ae76709bc73a139a1bb896
BLAKE2b-256 b5874bfee319015237bb8d2c27726c62baf7320a7edcbee389ec3d2156bd5030

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 95.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 db650fd08cf205112897af2040bc7e52716b643afffb98b4c4052c8012d9115d
MD5 74d7ac3f4b45162bb0c8f95296b1219c
BLAKE2b-256 ee5d9d9afe2dccffb6f4b9edfb7b8dc6d7c9db5706330f84d8d63bb221490f6e

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 82.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4e2f33d3bf3828fc7cfcad7b666756b0ca4056fe9e3f762e0c20cc3be9913013
MD5 c272c588ad64533ddcefef328bd05e38
BLAKE2b-256 0d88d1dbae5e268ae3e8a5a46257d660c5718318b02afeb693c7981f34d6bba1

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 723.3 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3e6463c6d52a339539d542f2efec644073ff0e231ad1c116926852b7b9e8eaf0
MD5 267417eab1a45cc024e8b0ed9679cdbc
BLAKE2b-256 1ee8cef2f83a58250dc00db6fee16b491e4ee85ae7d51dfa6e828f85206de99d

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 787.3 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fb8d8476ef7f8316a7480927d7e681146115881b41749919cb060eb67427a83e
MD5 0d94f7a447ab59352ee0a7a4a2e4ba1a
BLAKE2b-256 c097c1ee393a031bb1c91af83cf7c7bac5abbbb767bad77ebfb3a4eb4fa455a8

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ab46eb62b1f485bb9799fdec969ff48908c296646c027a631003605a73262e6
MD5 f18587aae673fdd098585299118ee260
BLAKE2b-256 8e7a4dd6e6f5ab1d052f2609c5541aa6e4a701055a53985218a1bcd426e5e76a

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 91.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6ec6edb2b97e1053b90c6eef74d6349ff11f756d96a4f7cf969045aa24ac8ffd
MD5 612125e1ea1f29bd9584b01e118e0b43
BLAKE2b-256 8c401d529f1f3b5be1115212b836e1d75edc9312ca0a2da3a7ddb88825b0dc17

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 96.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0b6e237a890c5c13b9f0c721dcac477a94f323dcd79867a8c21523e6523412c3
MD5 60fd765fc5c29d36b2be88b1ee9126dd
BLAKE2b-256 eca4c5b56ec0dd1c09ad159dcc943a74595b1b4f6a43833d97e70641d34973cc

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 83.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 43559b71f0b0bf0e8e92370c084d9296c9f76a0d78332b9c2a4f44b1c34450ea
MD5 9a748586cf65d034a72732ad2661c798
BLAKE2b-256 ede29d0444c2251e8a05a2e7abad1c2b678e3c220d9f7ca5bada2dc4f661c225

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 726.3 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8f9fe5d5c98f3e8f6a480104284a03f666583214100b71aa4c657844afebbf8e
MD5 e4ca23759be51db46a2a4b4a91d5d543
BLAKE2b-256 38b40efe91f9d7d13aafeb9b2897556f95ea1a35aba494694c01164ab430e78c

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 792.8 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8e112f53c6da3984283f177c48d9264f8750ee7846bea0f8bc90c870c3686284
MD5 37d4f8f17729607b737a0177867c2c3c
BLAKE2b-256 469b4c1038f421cd11d6215f3066e958cfc2ba2767682a4e5b9c3633523d3eeb

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49325af17121e7b0a10da0b4f501c33e66295cb0541786b4114885d66011deb9
MD5 e7d5e696d20c7f4089441b9c64270f97
BLAKE2b-256 f030a9c4d49aaf3e762c099cd060cefe9ef7434e4c6bfccae52b235741460715

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 90.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5fe02561fc1dd7dea2d3572b6e931133ec4e15463c7d6d1d986a3d6b790763c
MD5 f523bdbfc0288fe132f3e23cad6f1b5e
BLAKE2b-256 d0a4813507ae90eac69c3b49dd2480d282abe8daf09828a33ddb132684ed0f38

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 96.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 799f72a52392dc3e89efea863e9b46f45bceee513fd5bbad1209c6a3bb9fad6c
MD5 23cb1128d300604e89e2ea05aca94b0d
BLAKE2b-256 0d635045a287afc240477ae60c3b59fdac76767ba651ad89594293b8d2afaea9

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 83.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c1423fd891bdac5bef040968e18e5eb76825df3d0d05bfc9501759ce939e5940
MD5 96faa09a61b71b157e4dd3f1af22ae94
BLAKE2b-256 d8a34f244583d465a01c1e2eeff9bed492210ca2accf4402a64fc08b3f200e53

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 726.2 kB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 37fd1df8d10569c551317bef10a3d1256e2a8c51fcc78beda9e29dffdc4b4fda
MD5 cb2117502df8486e6748444760fed9c6
BLAKE2b-256 f270c50dc10e05ff71d07a0600b34c1aeaa487afffb53a9f4d9eee7b864acd8c

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 792.7 kB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 304bcd1f7079fadd40500ba2ddd9d616cc6c38fc3b5b0e9bd02c7a19a3bf77c8
MD5 0f3fdaa93b4a88a20ef11cc45ecf50d1
BLAKE2b-256 bffe346e7ebeab49f0c4d844360c02fff740cfb6777ebbb2d15a9dbd704da962

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-0.13.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2816875cc2cb68279bf6eb689e8f9cf738f9a9e0d70bb6b3b88afe4866caa14
MD5 452f997ad54c1d26ada4bd647632e05d
BLAKE2b-256 5f57382760ce7a79f738e20654eb0e430f1e1b1c6ac000a6110c4de6f04127c2

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-0.13.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hammingdist-0.13.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 90.5 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hammingdist-0.13.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dbc5cb9a247abded8f209ac89d9c9f2556f3ae71b3f699bacf18e6c72d6422a3
MD5 bb119c622593030b55da60052291c3ce
BLAKE2b-256 91b7fd1116186a1952b3e5a4ea028463bbe862a9140684a4d0022163cac1908a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page