Skip to main content

A fast tool to calculate Hamming distances

Project description

A small and fast C++ tool to calculate pairwise distances between gene sequences given in fasta format.

DOI pypi releases python versions

Python interface

To use the Python interface, you should install it from PyPI:

python -m pip install hammingdist

Distances matrix

Then, you can e.g. use it in the following way from Python:

import hammingdist

# To see the different optional arguments available:
help(hammingdist.from_fasta)

# To import all sequences from a fasta file
data = hammingdist.from_fasta("example.fasta")

# To import only the first 100 sequences from a fasta file
data = hammingdist.from_fasta("example.fasta", n=100)

# To import all sequences and remove any duplicates
data = hammingdist.from_fasta("example.fasta", remove_duplicates=True)

# To import all sequences from a fasta file, also treating 'X' as a valid character
data = hammingdist.from_fasta("example.fasta", include_x=True)

# The distance data can be accessed point-wise, though looping over all distances might be quite inefficient
print(data[14,42])

Output formats

The constructed distances matrix can then be written to disk in several different formats:

# The data can be written to disk in csv format (default `distance` Ripser format) and retrieved:
data.dump("backup.csv")
retrieval = hammingdist.from_csv("backup.csv")

# It can also be written in lower triangular format (comma-delimited row-major, `lower-distance` Ripser format):
data.dump_lower_triangular("lt.txt")
retrieval = hammingdist.from_lower_triangular("lt.txt")

# Or in sparse format (`sparse` Ripser format: space-delimited triplet of `i j d(i,j)`
# with one line for each distance entry i > j which is not above threshold):
data.dump_sparse("sparse.txt", threshold=3)

# If the `remove_duplicates` option was used, the sequence indices can also be written.
# For each input sequence, this prints the corresponding index in the output:
data.dump_sequence_indices("indices.txt")

Duplicates

When from_fasta is called with the option remove_duplicates=True, duplicate sequences are removed before constructing the differences matrix.

For example given this set of three input sequences:

Index Sequence
0 ACG
1 ACG
2 TAG

The distances matrix would be a 2x2 matrix of distances between ACG and TAG:

ACG TAG
ACG 0 2
TAG 2 0

The row of the distances matrix corresponding to each index in the original sequence would be:

Index Sequence Row in distances matrix
0 ACG 0
1 ACG 0
2 TAT 1

This last column is what is written to disk by DataSet.dump_sequence_indices.

It can also be constructed (as a numpy array) without calculating the distances matrix by using hammingdist.fasta_sequence_indices

import hammingdist

sequence_indices = hammingdist.fasta_sequence_indices(fasta_file)

Maximum distance values

By default, the elements in the distances matrix returned by hammingdist.from_fasta have a maximum value of 255. You can also set a smaller maximum value using the max_distance argument. For distances larger than this hammingdist.from_fasta_large supports distances up to 65535 (but uses twice as much RAM)

Distances from reference sequence

The distance of each sequence in a fasta file from a given reference sequence can be calculated using:

import hammingdist

distances = hammingdist.fasta_reference_distances(sequence, fasta_file, include_x=True)

This function returns a numpy array that contains the distance of each sequence from the reference sequence.

You can also calculate the distance between two individual sequences:

import hammingdist

distance = hammingdist.distance("ACGTX", "AAGTX", include_x=True)

OpenMP on linux

On linux hammingdist is built with OpenMP (multithreading) support, and will automatically make use of all available CPU threads.

CUDA on linux

On linux hammingdist is also built with CUDA (Nvidia GPU) support. To use the GPU instead of the CPU, set use_gpu=True when calling from_fasta. Here we also set the maximum distance to 2:

import hammingdist

data = hammingdist.from_fasta("example.fasta", use_gpu=True, max_distance=2)

Additionally, the lower triangular matrix file can now be directly constructed from the fasta file using the GPU with the from_fasta_to_lower_triangular function. This avoids storing the entire distances matrix in memory and interleaves computation on the GPU with disk I/O on the CPU, which means it requires less RAM and runs faster.

import hammingdist

hammingdist.from_fasta_to_lower_triangular('input_fasta.txt', 'output_lower_triangular.txt', use_gpu=True, max_distance=2)

overview

Performance history

A rough measure of the impact of the different performance improvements in hammingdist:

overview

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

hammingdist-1.2.0-pp310-pypy310_pp73-win_amd64.whl (156.0 kB view details)

Uploaded PyPy Windows x86-64

hammingdist-1.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (507.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hammingdist-1.2.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (132.3 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

hammingdist-1.2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (163.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hammingdist-1.2.0-pp39-pypy39_pp73-win_amd64.whl (156.0 kB view details)

Uploaded PyPy Windows x86-64

hammingdist-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (506.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hammingdist-1.2.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (132.3 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

hammingdist-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (163.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hammingdist-1.2.0-pp38-pypy38_pp73-win_amd64.whl (155.9 kB view details)

Uploaded PyPy Windows x86-64

hammingdist-1.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (506.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hammingdist-1.2.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl (132.3 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

hammingdist-1.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (163.1 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hammingdist-1.2.0-pp37-pypy37_pp73-win_amd64.whl (155.6 kB view details)

Uploaded PyPy Windows x86-64

hammingdist-1.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (506.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hammingdist-1.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (162.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hammingdist-1.2.0-cp312-cp312-win_amd64.whl (157.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

hammingdist-1.2.0-cp312-cp312-win32.whl (136.4 kB view details)

Uploaded CPython 3.12 Windows x86

hammingdist-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (507.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

hammingdist-1.2.0-cp312-cp312-macosx_11_0_arm64.whl (133.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

hammingdist-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl (164.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

hammingdist-1.2.0-cp311-cp311-win_amd64.whl (157.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

hammingdist-1.2.0-cp311-cp311-win32.whl (137.3 kB view details)

Uploaded CPython 3.11 Windows x86

hammingdist-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (508.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

hammingdist-1.2.0-cp311-cp311-macosx_11_0_arm64.whl (133.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

hammingdist-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl (164.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

hammingdist-1.2.0-cp310-cp310-win_amd64.whl (156.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

hammingdist-1.2.0-cp310-cp310-win32.whl (136.6 kB view details)

Uploaded CPython 3.10 Windows x86

hammingdist-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (506.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

hammingdist-1.2.0-cp310-cp310-macosx_11_0_arm64.whl (132.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

hammingdist-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl (162.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

hammingdist-1.2.0-cp39-cp39-win_amd64.whl (156.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

hammingdist-1.2.0-cp39-cp39-win32.whl (136.5 kB view details)

Uploaded CPython 3.9 Windows x86

hammingdist-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (507.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

hammingdist-1.2.0-cp39-cp39-macosx_11_0_arm64.whl (132.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

hammingdist-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl (162.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

hammingdist-1.2.0-cp38-cp38-win_amd64.whl (156.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

hammingdist-1.2.0-cp38-cp38-win32.whl (136.3 kB view details)

Uploaded CPython 3.8 Windows x86

hammingdist-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (506.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

hammingdist-1.2.0-cp38-cp38-macosx_11_0_arm64.whl (132.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

hammingdist-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl (162.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

hammingdist-1.2.0-cp37-cp37m-win_amd64.whl (157.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

hammingdist-1.2.0-cp37-cp37m-win32.whl (138.0 kB view details)

Uploaded CPython 3.7m Windows x86

hammingdist-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (510.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

hammingdist-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (161.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file hammingdist-1.2.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 36ce186ce3be0679e5c5a2cc4933ef7c2aa0fe81605bd7e5fc8b848ebe1fb767
MD5 827622cefd04dfce6cccbc42e285c536
BLAKE2b-256 e69473e6b4d1de989b77dfdc5de00143e70d0475b81eabc17b520207ef0b9407

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3893ea34acdccb916136e35734e7c836634de0aa6becb221917ad9ce78e8ea2
MD5 85c8bdc5dd52636e705d63720970e586
BLAKE2b-256 0d6d5a497888df7614d4358ca5aabeae195ca1e1672a344902cba0d82b3e5e3f

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8655566aacca3882a4dff4f21c67c0be5afe5ab28ae8698911047926c6eaa516
MD5 77394e25a2f9e7b2f386b27632f333f6
BLAKE2b-256 92c129ddc6da1338287548587d0d7d960dac33c96e7d8b55786000535e1e9964

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ddf40a28a5a954d00d816f5c28561523896df11ec51fbe13aa84f86d77c785a7
MD5 58de150e22698d7d78fd7b06340a2f1a
BLAKE2b-256 267a8b80f3af153a76a46f81c452f10a59a8c144f0c10dc29620924fe04981ee

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 44914125ce1cace333e899ad6f8485ea1fdd391a5d34d48e5182f408667e2bdf
MD5 fd9bd3e1aed609c2acfed8e96f24a84d
BLAKE2b-256 e22b5b94ebdff7c4f93befc94243e729cb237a4432cd61fe41bd5bf8a559ffe1

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b5387f7a7df553f4efbb5b8eafeef4d5147f524ec673f4a84e593131204f87a
MD5 613671cf28ac2603f6a42393cd44ab3e
BLAKE2b-256 3df049a4ab6656d36163a1a3a3a0a5ccad000b6a5feee509d9ac5409362e9073

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b636539afa161bee299bd3c14de04730f561587a28c0f833b77f3588257d4b1a
MD5 e71930949edccaae52be6e0d67e2becd
BLAKE2b-256 61e6b7a6d529638c354505004fdd6021ec83d91fda51f67ebd554ea8c11c6af3

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7bb107a38eb71030cfdfc16f3d893945192b787feeb636a0daabadbe65751c8b
MD5 498d6d3df406ab7f8571461362214d0c
BLAKE2b-256 b4cd636ac9e5e21e9bde8ba847f1889c60c8f1c3d931c2a371605384737a2ea2

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 dcecd784bb9f4368bd28e8a397e2fc9095dbc6336348cee60d77ecf9f0204b59
MD5 eeb3c4bcf03aefa5dbce12c1f1081cc8
BLAKE2b-256 95e4419dfb97adee19f65ebe3f8b5114a76fabccc19a9310efefcd3d575e9191

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c788c4d800abc2bace220d19461a13864df150b104022516c554298fd3028fd1
MD5 9b585664ca6b9a78cf99c50cbf035e45
BLAKE2b-256 b68a0bbc8df971e202f313cf06b73174859b8900d82bac41784e15d8b0003e75

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 62304e0184641172e2309e73ab92362e26de6375aa62dcf7cb4ddc0000015705
MD5 d1dd82962e4ef269947f8f10bcaa09e2
BLAKE2b-256 868db0557c7ed8bf62c6c8a191dc299679742296962e3702ef066d729a2cb877

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29f782dbcc44189a89c257998a70603d01da173f15223d8588387ad2e8cc266d
MD5 e4af4c6af578e9cc0998b959bb39f893
BLAKE2b-256 04a37627ff38bfdd761a3e91746080ad5459d5f4de71d23649be5fadd7666558

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5541c60ac18f45472951d71c6f2a6a35c70e67e64a53b941a34783f4eab4ee94
MD5 64cc56796daa36f45968a4d2683036d0
BLAKE2b-256 503b5bd09d2ebaa308bcda60bf05758daba49680838ce5131a2c3ee4bb033ec0

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 582eea3e9a371c572a5aebd88f3b9244a64dc61c24df539ac1e3d5cb4ef35867
MD5 4bedd3c9ad7f071376fc112cac9fcaca
BLAKE2b-256 e0f961dbc9d559d1b0afe28dc504adb2a8d3170f08b74c477adea9e58016b206

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 74f514d325aeb5ff4d0b3bd15fbcc3617019d7041a648b28540aa8308e26114d
MD5 5169c3918f57cc8caae96cdd09032653
BLAKE2b-256 7b075c4e069ef14220493f2787d858c6c7054547599cc561acc3dc73153d129e

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 69c10f2868b9e1b80d62fa02507d93cf57f4ecde8167b8b3fbdbf3bbbcaf8833
MD5 6942876544be061b7b887d99671fb456
BLAKE2b-256 cf8e2e33c0609af40d40867187db172db9bc8f484e2c4f62bcaee9bfa13ad397

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: hammingdist-1.2.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 136.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for hammingdist-1.2.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b4114ad9655ab6e4d0893d78f2656033857904c069e50b13a235f0629098bd3f
MD5 28d22cb9d5eb293f37bb2a0a1b7f1f64
BLAKE2b-256 d62c109a906e8469a02360a040a54cb3f7a2fad409ef75a620e82302e4d8ef00

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0b0c4749813cb71b83822dcdfbfec02cb799a31f07b49bb6e3e54dda9ac2d13
MD5 c37e19d82155662e16284a50a586026c
BLAKE2b-256 20ab4e65906aefcba7036a8ebf36fb10f86af7967a6b45ed05c4ee364e748e32

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7e0a14692d3ecc49137a625159462aae4347a47aaf88928bb792a0982efc8638
MD5 755949cd678193eee0aca344c3a53f0b
BLAKE2b-256 51ec6ae6f9f27a412ca8df6c1922479c02e5fd9b835de4fba785f104b7201681

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c1e1f8c521214f759bff87057658fa6fea8a7a2bce703133b807839210154d5
MD5 0e2e06fcd6e5d82ab4bb4a88cca66cfc
BLAKE2b-256 a3d2187b8aed5a30d36885fc1024cbf8c306ed7eabb9c807fc50e63f943b6fca

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ba8704899e67bf6fc0ec037364e54cd1947c9f9e90fe0b88aa5d02ef7d308b48
MD5 434b24b9c24f8867dbc430a0d38e2328
BLAKE2b-256 5447fac7d0acb331b8be52ae4d8cce330e7242abf948c646bc5cbcfe284622db

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: hammingdist-1.2.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 137.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for hammingdist-1.2.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ba8026efe52f7ab80a4b94d679bb04127484995240db014d84ab13291e2d9235
MD5 7468d2353273cef5378672043851ba1e
BLAKE2b-256 4f27ae876959a9e7662b947c682f7f356d706701cb691582d219febb098ad5d1

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce2029d7984a0bcf231c59140b8f96227b3e11b4291694a752843ac64410823b
MD5 fe8b2633752401780d58b496c3cc57dd
BLAKE2b-256 6237b72aa12d3b141bc404dffbd1f69f4a85e84aa0f3ca917725346286b7a9ca

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 18c70a177a2f9277db3c04ad20542f96d40aa94cc3a120e5af41cc1a40085277
MD5 5931b78d9df7dca792783cc9a0e05c18
BLAKE2b-256 e28e793d5ce1328d5d24a34fc810a9f42912e5edebb74e9d6ac2c9e807348f16

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9531825b361e02ebaffb557b25b304c2ddc1f4913f183b78dca04aa55e4383d
MD5 8113b705c943b059ebf4914e798cadd1
BLAKE2b-256 252c3c473f3501dbf22215747ac94c11f72349b3bc98ffb965729a634acacfd2

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 49f8b49a507e10770f6553da73729d5944fa679b35e1b8897b67827f07ac38db
MD5 bcff94c820872c21b9a458d4dc691e11
BLAKE2b-256 c2f9212468dd7ea77f547ca21df6998cc9801f99aa0691383bd103ccfa1c5084

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: hammingdist-1.2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 136.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for hammingdist-1.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d56e86a3f6adae5ee863338a7a6f38ed4c2b5c12442d98c007966c00be674dc0
MD5 f8f167448c121693e958df7f5b3c1b10
BLAKE2b-256 7ffbc61050241ab268483be79dd19fdef93703c660caaff7b56a00cec16d6dfa

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59158e7536bdfb394ba5626b74a562b23306ec2a2b616eb90c6f9782374c664d
MD5 4070e8e579c263cbb8048a96709969a1
BLAKE2b-256 2d5cd24994b807c0d64bad09beefaa2cf5409e53b6fb8903a8d246fc00adb0cf

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ae09f82dd2f7efcc54f2719ca8042e92c85eea2caf561be5d75d68e907be7f5
MD5 2c144d2b71b26d8ef43bbe531181ce4f
BLAKE2b-256 efae92e47c7e31720c381da4b4627baf80589a2f32e2b24f86bae5d86e237939

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 18315625f91a528073d0514bad53bc66ce2805dc3f2253b234ef68a69900e6a2
MD5 50179977dedcec96a1447fa16265dd3a
BLAKE2b-256 b7cee4e6707681f2b1589492e05bdf96147635c4211119dbd41e5603f96e505b

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8f39615fbdb9a3b337b33a3d7a90bde697ba16747f93048aec33f86d0534da1b
MD5 071b37c7b71f59aa723c88f1295b45c6
BLAKE2b-256 425d9b51ea0db194b8962d8f07074485a2e9ad2d6a9e5b4974424567630e617f

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: hammingdist-1.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 136.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for hammingdist-1.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8b6e32b1c20731567801a4714e2c29cdb834c08b9172522ba00d7ed84743526b
MD5 9f5b98e742782dffe91318a7f66afbe7
BLAKE2b-256 fc92126c9ae41cb062d7b8a882466e9e200e94890d019355b6ac870ad7d2e644

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b455ada86fca3df8a738c74cb4033be856f71ac2a4ed99952f8113fb79aa0297
MD5 05fc48389e15e12018958b89d2268982
BLAKE2b-256 b663d54b199c3bf339ac684d6326d970717cb6bf9e1aa81eb01f79f14d11b6ad

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a585fdd2c3020a0b42824bab8796e2b2eedc4b1ecfad96316487f368a80f0552
MD5 1c23873d399bb6b91394cab12cff26bf
BLAKE2b-256 c6599e11915e66c092a7044f98bcf05e18699e876699112b1de6fd7505e4d730

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1a0c629b5bd44bbce943e9243a46f53c4930a87b69bd5b59bb8f91cb1df3cb52
MD5 06b465436d57409ed12f467b00dd3df6
BLAKE2b-256 bee9e1bbcd9ba6d640e6a2fcd5c3ce5f7165a83a5f9c000afd6bb413e4962aa4

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 392104d5678907a4571d48a9beca0be5f56526000fc76ab169d4195f86ffeceb
MD5 f9316cd717047a64be6a74ea8b82b409
BLAKE2b-256 e18f5449b0947b4a8e757d24c5f921a0e83733e604e51da2a6fed14080041302

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: hammingdist-1.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 136.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for hammingdist-1.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 80db9e6050f6c48bfd5f0875ff69d2af09188622147604b23afe79f64d268a5e
MD5 0dbcd5f3e3b3eb0ac93f3acfa33e530e
BLAKE2b-256 8da863fc12bf6d56161cdb7f65efa03ba3191764ba24c67fa38210c79f5087f5

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4c4871b13df80366cc3f7a437f001d64f2200033ad68589f6965e2f784f1ff6
MD5 72de20679e85763e6d98f7489b105d1c
BLAKE2b-256 b5a5816b51369826f43dc9efd68325390956c7305f324dd7fb20145efdf0b5a9

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b9afed657bab08b93dd6fb91385f0c297b797f0f5b6a80789d05a2ccd159f64
MD5 3f17166575bf741dd756d725294030d2
BLAKE2b-256 62fd1ed7deacb392b626307157090bb47186be882bf88de1295257d065f4a7d4

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2eea21e1af2d59a306fe89da1bcca0a87c9b7618e55c6a3eb07424d805ced452
MD5 b27174458d6220f6678d3fb81c5311a8
BLAKE2b-256 100ec0aafdd4e6d6d7000489f7caf1a2098178e079617cec2488225fdf1c73a8

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f230aa2eed77a3472ef07b725ea0ebfdb1a4a0d575ee96ef7bcfa14b84a2c754
MD5 d72234b246eb33a11080b5af841714c8
BLAKE2b-256 40d5bc1128f42e86b5d862b1184877350a7b57ad037cf68ff2a7a0f021b46b63

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: hammingdist-1.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 138.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for hammingdist-1.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 efbef7be4da79498fcca4694e23ec7e5aad5d6adab1a5038a4b6c110275d69d4
MD5 ea7ca087620475f2ce27911143a66222
BLAKE2b-256 47fec88f932df7748e48bfc811f77f13ea2105168bdd5969d2dacc5a9fa2732c

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c44c5b2cf40af6b6c414b25fca520bdf1b96f16b8a4135dafe8119258c6065b5
MD5 0b4395712e610c1939801adb97e1912a
BLAKE2b-256 5a224507d5438c5c5adab9d774ce8e45fb4fee96ce6d6bd9a5e38b2e5350f51a

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df78ddc6554d262f18d50c8e87aefa0633e638617ab0a77a2f204e5b30469a4e
MD5 14af8d981e13e3279f5dd0e2771eae95
BLAKE2b-256 a54ce4be3e95ab1cb6c6242b8dc531251208e605659913feb42b9c7a271204f5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page