Skip to main content

A fast tool to calculate Hamming distances

Project description

A small and fast C++ tool to calculate pairwise distances between gene sequences given in fasta format.

DOI pypi releases python versions

Python interface

To use the Python interface, you should install it from PyPI:

python -m pip install hammingdist

Distances matrix

Then, you can e.g. use it in the following way from Python:

import hammingdist

# To see the different optional arguments available:
help(hammingdist.from_fasta)

# To import all sequences from a fasta file
data = hammingdist.from_fasta("example.fasta")

# To import only the first 100 sequences from a fasta file
data = hammingdist.from_fasta("example.fasta", n=100)

# To import all sequences and remove any duplicates
data = hammingdist.from_fasta("example.fasta", remove_duplicates=True)

# To import all sequences from a fasta file, also treating 'X' as a valid character
data = hammingdist.from_fasta("example.fasta", include_x=True)

# The distance data can be accessed point-wise, though looping over all distances might be quite inefficient
print(data[14,42])

Output formats

The constructed distances matrix can then be written to disk in several different formats:

# The data can be written to disk in csv format (default `distance` Ripser format) and retrieved:
data.dump("backup.csv")
retrieval = hammingdist.from_csv("backup.csv")

# It can also be written in lower triangular format (comma-delimited row-major, `lower-distance` Ripser format):
data.dump_lower_triangular("lt.txt")
retrieval = hammingdist.from_lower_triangular("lt.txt")

# Or in sparse format (`sparse` Ripser format: space-delimited triplet of `i j d(i,j)`
# with one line for each distance entry i > j which is not above threshold):
data.dump_sparse("sparse.txt", threshold=3)

# If the `remove_duplicates` option was used, the sequence indices can also be written.
# For each input sequence, this prints the corresponding index in the output:
data.dump_sequence_indices("indices.txt")

# The lower-triangular distance elements can also be directly accessed as a 1-d numpy array:
lt_array = data.lt_array
# The elements in this array correspond to the 2-d indices (row=1,col=0), (row=2,col=0), (row=2,col=1), ...
# These indices can be generated using the numpy tril_indices function, e.g. to construct the lower-triangular matrix:
lt_matrix = np.zeros((n_seq, n_seq))
lt_matrix[np.tril_indices(n_seq, -1)] = lt_array

Duplicates

When from_fasta is called with the option remove_duplicates=True, duplicate sequences are removed before constructing the differences matrix.

For example given this set of three input sequences:

Index Sequence
0 ACG
1 ACG
2 TAG

The distances matrix would be a 2x2 matrix of distances between ACG and TAG:

ACG TAG
ACG 0 2
TAG 2 0

The row of the distances matrix corresponding to each index in the original sequence would be:

Index Sequence Row in distances matrix
0 ACG 0
1 ACG 0
2 TAT 1

This last column is what is written to disk by DataSet.dump_sequence_indices.

It can also be constructed (as a numpy array) without calculating the distances matrix by using hammingdist.fasta_sequence_indices

import hammingdist

sequence_indices = hammingdist.fasta_sequence_indices(fasta_file)

Maximum distance values

By default, the elements in the distances matrix returned by hammingdist.from_fasta have a maximum value of 255. You can also set a smaller maximum value using the max_distance argument. For distances larger than this hammingdist.from_fasta_large supports distances up to 65535 (but uses twice as much RAM)

Distances from reference sequence

The distance of each sequence in a fasta file from a given reference sequence can be calculated using:

import hammingdist

distances = hammingdist.fasta_reference_distances(sequence, fasta_file, include_x=True)

This function returns a numpy array that contains the distance of each sequence from the reference sequence.

You can also calculate the distance between two individual sequences:

import hammingdist

distance = hammingdist.distance("ACGTX", "AAGTX", include_x=True)

OpenMP on linux

On linux hammingdist is built with OpenMP (multithreading) support, and will automatically make use of all available CPU threads.

CUDA on linux

On linux hammingdist is also built with CUDA (Nvidia GPU) support. To use the GPU instead of the CPU, set use_gpu=True when calling from_fasta. Here we also set the maximum distance to 2:

import hammingdist

data = hammingdist.from_fasta("example.fasta", use_gpu=True, max_distance=2)

Additionally, the lower triangular matrix file can now be directly constructed from the fasta file using the GPU with the from_fasta_to_lower_triangular function. This avoids storing the entire distances matrix in memory and interleaves computation on the GPU with disk I/O on the CPU, which means it requires less RAM and runs faster.

import hammingdist

hammingdist.from_fasta_to_lower_triangular('input_fasta.txt', 'output_lower_triangular.txt', use_gpu=True, max_distance=2)

overview

Performance history

A rough measure of the impact of the different performance improvements in hammingdist:

overview

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

hammingdist-1.3.0-pp310-pypy310_pp73-win_amd64.whl (159.6 kB view details)

Uploaded PyPy Windows x86-64

hammingdist-1.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (512.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hammingdist-1.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (137.2 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

hammingdist-1.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (163.7 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

hammingdist-1.3.0-pp39-pypy39_pp73-win_amd64.whl (159.4 kB view details)

Uploaded PyPy Windows x86-64

hammingdist-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (512.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hammingdist-1.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (137.2 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

hammingdist-1.3.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (163.6 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

hammingdist-1.3.0-pp38-pypy38_pp73-win_amd64.whl (159.5 kB view details)

Uploaded PyPy Windows x86-64

hammingdist-1.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (512.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hammingdist-1.3.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl (137.2 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

hammingdist-1.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (164.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hammingdist-1.3.0-pp37-pypy37_pp73-win_amd64.whl (159.2 kB view details)

Uploaded PyPy Windows x86-64

hammingdist-1.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (511.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hammingdist-1.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (163.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hammingdist-1.3.0-cp313-cp313-win_amd64.whl (161.7 kB view details)

Uploaded CPython 3.13 Windows x86-64

hammingdist-1.3.0-cp313-cp313-win32.whl (139.3 kB view details)

Uploaded CPython 3.13 Windows x86

hammingdist-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (512.3 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

hammingdist-1.3.0-cp313-cp313-macosx_11_0_arm64.whl (138.9 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

hammingdist-1.3.0-cp313-cp313-macosx_10_13_x86_64.whl (165.8 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

hammingdist-1.3.0-cp312-cp312-win_amd64.whl (161.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

hammingdist-1.3.0-cp312-cp312-win32.whl (139.3 kB view details)

Uploaded CPython 3.12 Windows x86

hammingdist-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (511.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

hammingdist-1.3.0-cp312-cp312-macosx_11_0_arm64.whl (138.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

hammingdist-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl (166.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

hammingdist-1.3.0-cp311-cp311-win_amd64.whl (160.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

hammingdist-1.3.0-cp311-cp311-win32.whl (139.0 kB view details)

Uploaded CPython 3.11 Windows x86

hammingdist-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (513.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

hammingdist-1.3.0-cp311-cp311-macosx_11_0_arm64.whl (139.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

hammingdist-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl (166.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

hammingdist-1.3.0-cp310-cp310-win_amd64.whl (159.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

hammingdist-1.3.0-cp310-cp310-win32.whl (138.4 kB view details)

Uploaded CPython 3.10 Windows x86

hammingdist-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (512.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

hammingdist-1.3.0-cp310-cp310-macosx_11_0_arm64.whl (137.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

hammingdist-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl (164.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

hammingdist-1.3.0-cp39-cp39-win_amd64.whl (158.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

hammingdist-1.3.0-cp39-cp39-win32.whl (138.4 kB view details)

Uploaded CPython 3.9 Windows x86

hammingdist-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (512.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

hammingdist-1.3.0-cp39-cp39-macosx_11_0_arm64.whl (137.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

hammingdist-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl (164.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

hammingdist-1.3.0-cp38-cp38-win_amd64.whl (159.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

hammingdist-1.3.0-cp38-cp38-win32.whl (138.4 kB view details)

Uploaded CPython 3.8 Windows x86

hammingdist-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (511.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

hammingdist-1.3.0-cp38-cp38-macosx_11_0_arm64.whl (137.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

hammingdist-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl (164.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

hammingdist-1.3.0-cp37-cp37m-win_amd64.whl (160.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

hammingdist-1.3.0-cp37-cp37m-win32.whl (139.5 kB view details)

Uploaded CPython 3.7m Windows x86

hammingdist-1.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (517.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

hammingdist-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (164.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file hammingdist-1.3.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b3ca365fcac93c3f93b7970834811c3898153a58cff90a40f612bb9aa687bf14
MD5 cf3d9986e8ee51d53d9cf60b72d3d3f1
BLAKE2b-256 bcad322f36f8d1ca307ef33712a072e14241eba3b6a5bc8bd252e065a25c8aad

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9aa810414b7c1ae2f43a8ae169121c460318b9a788ef9104214156afa5725e03
MD5 05a9277d04ca29a173b2a2a19447b2c5
BLAKE2b-256 8c9adb0e5eb70371ca75cae329358de8537a9f2a90b9fec1c0adf6c8dcb64689

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e59ce94a6c0d5f7783882742ab737d3e952bfa8a42d8af4084a93ddf3508c9b9
MD5 cd566556d8b03f08cd6aa7176dc2c84c
BLAKE2b-256 818e0512158f572e76c10689de87ed2625e9abddd808c55edeaa7c63d6f9c94e

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e238e50c7df8020299b574c4d3551eb534688c1776efec70e4d5ed380aa1b3ef
MD5 24da039cc85bb9f478c28845f0a29a23
BLAKE2b-256 2c7a39fb6f6025392ae187111f6e71a88c9280f913e02b277293e38ed53270d4

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ae4fc273492bfbd3a77f7f21164da991872c492e09082edfba059545d54a1d57
MD5 ab47b3eca58766070a1573f986c796f6
BLAKE2b-256 a324ba4cc8370306ba39f5053dbf2395744bef1676c80aba1cfa7706881edfee

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08d4c9108820431b2ef4774a1aaa97876aa4337f8610ff92bfec1dfd49f3a694
MD5 31773ea645a321b3db8190b3b7f27df9
BLAKE2b-256 1f057267f4da56834a21d251e1096d8c52ba8188ce62924dd1a83a96acd77b9e

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 67cbe0f6cf942716bd84561516771c419b6e0636c41194f9460243897fd01c16
MD5 1ac59dedb611686b02511fc72008b885
BLAKE2b-256 8938a17efe786f8ce6de1116fdfa6742f373b29164e1ed2e88d0b072e8f2f378

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b1ec08c4c4c8cedfa84c93999184f0f8ce0d298194cf2804a512c5aae797c204
MD5 e57d5c98ac2ae892c7bb057652162127
BLAKE2b-256 a20638638695131a46ee08addb0defa537e96fe05fd69f17f987f08baf3e406f

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 289aa66e0e523cca08b18b33199d66a4141085f3bb0af79e8fcba4404005c45e
MD5 22ed3d371276b6c95ae6d2f5b0a02575
BLAKE2b-256 214ad9de71cde7249a1a190c1693ca313295a25df83f787a263758c9f0ed4ae9

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a48d3d18aad002e78f88917ed94b1dd99b9452e6f5a24fedcea5ee4d52e80cbe
MD5 ffd8807b4b3651a2fb2fa8b761563bf0
BLAKE2b-256 5e24dc56bc6c7049fe8941cf14877fdb73dfe8fec319ef61830e5b3f321f3264

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a32d05bc4ec8c2be98fa38efaefd940ff5465d48359f6b4f93237ef1907d1a60
MD5 24e29c9ed0867967d80f0b3c9df7bc7f
BLAKE2b-256 f9790d0f2684d895162217f5c7d4c834b885ac3149302be08d4cd2d6f545987d

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dce48d10a73e2a2d5409c28b94e775f9bf19ad0f049eea4d02038b691e62e4b5
MD5 73d2a78d95e66bf3dcc4df2dc8b58886
BLAKE2b-256 b4fa5a77cdb9f9d1d3d6e945a33d3a340523a0eaefde51e96c2def3d0abb0bed

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c7d66f9afdd4058b5cbc8f3b58f08872b9d1283c4107ad4df0bed5a3a8950519
MD5 fa815ba90aa7d6afcb3df98a7cda2525
BLAKE2b-256 3f5a8cdcae5d642bb64fa0ffda0d6bd5b163a1b547153be0a57c6a9e13b55812

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 908465d6f0e28fcc1a4ab6f6480172645fadafcffa6586e6e883b09eff5fba62
MD5 d27b51a88643552811461e7c3f2d9a35
BLAKE2b-256 bbf8c8403cb9de3b64897abf03afe12438184b0eefec3618828566b09d6212f4

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51823e2af77e1c05c055125a8a0d22bc983db726badf13689f17414599211277
MD5 36a68448a9d0165a14a3d2b965ab32c3
BLAKE2b-256 18f20f0174d17eacbbbb9ea4cc76ab0459a9bd27ca5480268695e4e8ed4a3464

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 2c9f5d20af6a23465f6c672a113d6543d0580f980ec38001800af5850d6a6d6c
MD5 301c9273cddac5f029f34622f390b701
BLAKE2b-256 61c2448fae98b336eb80024799c36ddab46662bfe0c353c58597515879a43b08

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: hammingdist-1.3.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 139.3 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for hammingdist-1.3.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 a0ec8e3b1661daa2e6d3096e710d3d2b67f0c5dde4494ff10257757b5b75317a
MD5 984058312db5a426ac252d1c5f85ebfc
BLAKE2b-256 c8d45650fb0e8a17ff0e1a6c8df2f46920d8a2b6b1bc1e113a7db6b59f7fe81d

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed76e220428cd148a6d3ee41900b81c09609724cbd93698308b4a0d735ed9553
MD5 ba62ac32b3a9a9d1a685c8fa17e5c5fe
BLAKE2b-256 6d5695aee684cacdbb1c5641299d4699808e602d978466f37c61949c7d1fa041

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 366fa690dd9ace834881335375d514b1fd782869167dede470a905690d9b6940
MD5 69e2d01f979a89d4b7a5536f634771b0
BLAKE2b-256 bbfb622d65641ebaad1ceeac527fba8a9ac2a8e4b4fd018b39551d9d4ad41b18

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c3c41ccdc176d9cb24de363958fe4c8ebc1715aa5088a397fd3bbc9961116408
MD5 2e002f2ee18c6b0c38aacced60486947
BLAKE2b-256 86b46d473a758250b543dbdfeffee38cb3d532d8669889901159d7448893045f

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b7636964c971cc28feb0b617ebb54a0bcfbed10bb35bd8b1f2a8e2ba4ece8ac5
MD5 636fa2d69b8285df36b55fe95bef7d41
BLAKE2b-256 77b595c77b098e9d4ac375cf15a2d137d10a66c2e00beb37515c98e8baf58c87

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: hammingdist-1.3.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 139.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for hammingdist-1.3.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 ea14011b6f0c280ad6764ec3f931877b46cf3c96003394c86ddd7bd45b177a5e
MD5 97666a18ccf17f289a218db7fb933106
BLAKE2b-256 aa7d9a797842e60eaa5f30332f6dcf0eea02dc83c21a993b0bba8271fac8435b

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ee7dde95c52a27ab380582eeeb2d1162015c2c31de6a4748ba2386893af541c
MD5 f91c98b4e65fb81c90cb0ef661cde8d6
BLAKE2b-256 7bb1f60574c31cd6a7c96f402cedbef9c27ec0cd8bcc59cf815df7b3c559ba40

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 52363bb8d075a071981abfc22c5c56e6a0bdc3b98158093e711bc63ada2a368e
MD5 3e59fc6a571aae2bea85b53d7dd138e5
BLAKE2b-256 42cbbb55738f1341fbc685c34e2bf0630b648fb41b795ca9c22857aaa3722f8f

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 181a0f045d9ece79c1cd0c0561a44cde55a2e77f3d391d57c09c35f609b42908
MD5 f05ea00507bfc9edf5adc02f1d071976
BLAKE2b-256 3cdb2b43042888fc0b89eb25e5cf39a86f50fbf4ab258df5f0590c30a6259851

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 265de82489f99df6e12bc5a45e90868086d625ffec9bb7bc20ba4f3a91ec3033
MD5 1c259ca3255961ec0ed19e778e70297b
BLAKE2b-256 d63bb10f677b68bc6ccc1ca0ffb39955544a4dab9f0c8befdcf0e2272006fcf2

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: hammingdist-1.3.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 139.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for hammingdist-1.3.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 22ccd1e857ed9590639cd589ab27f883d8abfe6f5874b6303762c565a1065e17
MD5 f1ddf1c6d56a6fd2143db35fce85fd71
BLAKE2b-256 e738a75cc2e45015e85213225d27181ed6a39f447f7f981f5bc776d5ef60dd9c

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2cebae7771535f4f81b35019cedab850c6806a5f52f4e6a222b2d57b1c43fbf2
MD5 ff6f8fb53c75225d831c4fbf9a51ad52
BLAKE2b-256 b152742aba72008845e4ce25738b987e94ed44e30ec8c3ed784d63a42797bbcd

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03c8cee8cdb413e5ab9630867458bfc822e464ff02e953b0fb0b24ddb7239e06
MD5 48aac60253d43b5631f5ccb8926568fb
BLAKE2b-256 a292e2839dc06559d77d20a69085eca92779ab65a8a5fff9b579ce95ac1fa74f

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 57658c26a67e87548d0cb9e709508a3fb3a45d73512ff5d6708328e1f101e394
MD5 3f2813cbd6913bec1414cd92b4bd09af
BLAKE2b-256 2ba43145f5fb971c1e4bea8a9a146ffbd83232097ea4b7f935b592dff1869e02

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 faf68b742a76e0e7d087bc7d62c706a94324101e8ba0a8ef0beed1167ffd787b
MD5 c2a1a87bc9308d9343c6806df111d92d
BLAKE2b-256 51dab6f14a90c831028e593c41960c7d1877dae8e4bbe7601db828e9ee30b5c1

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: hammingdist-1.3.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 138.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for hammingdist-1.3.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 95b9b8d2aede8f7c95477800e1bacc14c0199ecc8eeb73efa3a795eb43cc5a60
MD5 5f7f8ffdd0daa388e0aaac47433a416c
BLAKE2b-256 86ba4f85d9238cab17bc92de9b2d43f517d10401bef36d7cf5b795903ae886ee

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89bb3b6daeca0c56e373b140e09f4102f20e0113ef9558b06e8c2a721981eb44
MD5 d08137e996b63f484948c6952c720df1
BLAKE2b-256 b1a3d9ce719f68acf7f6a5a2d0d4f0118d0d4cd74d3fbfcee15211aa74917f8a

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fd37a3d5dc89a3dc5be7417a3744424057b99b94a328c7b21f969cb94a7f965f
MD5 2650cb37fafd008da4e9ab7dc9cde05e
BLAKE2b-256 1be7076ff0551a8ea7fbd0f0ff2654a30ffe0a8f90b5d5f3e1b0f0b810833fd1

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 049b5a08b80097bd5abb38bee172988818f187126fa63f46bf474f6b721e4f24
MD5 7cc3e08afe6b33e8f9ad6842c2308be3
BLAKE2b-256 c3c0a8aab2df0ae02250f8368009dab3036a1901d4cc0da5fa9a4016f441b04d

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0daa5564b6678485830bb49130db0785bc7ab7dc59c5af0847f5715240f050e2
MD5 dae9a3502a3f5ac94b242790a69e5735
BLAKE2b-256 334a3b16999e850019f27c62a582484d6f27488e0f2462a52c7992d6a0046e3d

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: hammingdist-1.3.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 138.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for hammingdist-1.3.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 58b9148c8241a71e4341cbb41490380161292a5760a683051410bd70dc1da58d
MD5 764bb43e241deb89e137560958140674
BLAKE2b-256 2040941f6cd36453e5c5772e31d1edf4467b83607701f2958dbd6b76831c9da4

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06104b6d4ae23ffa3a602053b34350d418276249affd55b0a4d6a7231c9d7e21
MD5 8999930f87f4e7d6369a21816483bb17
BLAKE2b-256 a9b749b60d195db2b1055537f9c0f772eb661326fce4413a0e25e68b4c1f0397

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5353d8f7a5651ae50c1be92c75662584ffa6dc3d5ed511b818b3cc8bdb6b1aa7
MD5 6d7d6bf8076d53b9815f30d340b74039
BLAKE2b-256 69a79f26413dff80aa777810c401a53400151dc28c8b65e9632d6472985db183

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1523dc00bb7be1f5a612556fc3bddc882422343332a4fb42be3a9556465b1d8c
MD5 8d09672e314bca1e5ff23061ae90c190
BLAKE2b-256 e07591195c267eed904d54e084c7c4bba94775985d28d1e2301dfcc44ba0b9b5

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 180394a115f177a87b82cb963e2538a25e9f1bf87cd0377d05d8163251010b9b
MD5 8c71d985f073b423b5f4503e437c4b91
BLAKE2b-256 e117127cffddef730930095fa716ebde32c5fb0243d0f098ac1c67bbc0a29f8e

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: hammingdist-1.3.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 138.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for hammingdist-1.3.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7ffeb10295b5a635a1b196497c461c4ad901260ec3d722aec55d1e11e6908f09
MD5 17827441bd22477222d5ec501e743716
BLAKE2b-256 0a66f686991fe9b02a8f766452f186164ddd174fa5b630f3fc5544b9efb71f44

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdc50f0ccaf44e85c57750aca2eac309cba81a2dbd2ddffdcc289065ebc4a4d0
MD5 2dc2ec44eae52d3773442d01c2e01188
BLAKE2b-256 3daa4f1389a6f64458f18a42ae2d369ae2e67bc8ecbe0f53d9d6b14957960f6c

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b1b5c83170dba01b7b5f68e94c5199ff8a179c7b8d6dd0c5bfe0e12633d7d33
MD5 77f02ed2b6e257b8b9ee7efa803622aa
BLAKE2b-256 d333a32a4350861d18bbc10fec12f6de2eb8e6428969639135e8af35e158b4ae

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e34bfaed5a0b903cff2e4e04e77cc76f06893c50e4f40999ef2867a57bcc6634
MD5 a0a144d4ac4fb7821f313665d2393feb
BLAKE2b-256 2fd905ea64756ae27a2e2d2ba866e6c1b0b3f4660b754d26046d6e691489414a

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 78f78cc4fcdf74552dd1897590714babea37a463917393a10db441823de819f0
MD5 1a4bfda2a9becebe72e6a92b40bb16fb
BLAKE2b-256 3175c6eb3dafb5da8340681d71e7785cd999c109d5bd63eeb791a268f8aacba7

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: hammingdist-1.3.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 139.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for hammingdist-1.3.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 60c7d9d427adab6d5891c0d8632687c98e3bc0fc17972b2ac126b9f9119d6818
MD5 f848efa517737247c7424852d72031ae
BLAKE2b-256 fb6c9ebfddb185d3b10702382c44f601d27ef17ab5b1f23af1d191bdeaee069a

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb47a4375a6b9103b26f80467402f8afdf80a0eb950121a896866fd5b8cbbb85
MD5 76b0693e21c779a930c02daa75633bdf
BLAKE2b-256 2a7680b1951eeab6f961b942ace4f02e688159171ae780a8e53c04d7f92bac7a

See more details on using hashes here.

Provenance

File details

Details for the file hammingdist-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hammingdist-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 856e59d500e299a5b71261919653ec1e383ec1d14eae55872cf0bd0eb83aad71
MD5 847964ef3ec0f47220a651c729dd14b1
BLAKE2b-256 321dc9e45be1aa7342657e2f2e281a8bf3a5a9b2af4446d7789b80db32c13599

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page