Skip to main content

Hankel Transformations using method of Ogata 2005

Project description

This is a very simple module designed to implement the Hankel transformation following the method of Ogata 2005.

It is a fast and accurate way of integrating functions of the form f(x)J(x), where f is an arbitrary slowly decreasing function, and J(x) is an arbitrary Bessel function of the first kind.

Installation

Either clone the repository at github.com/steven-murray/hankel and use python setup.py install, or simply install using pip install hankel.

The only dependencies are numpy and scipy.

Usage

This implementation is set up to allow more efficient calculation of multiple functions f(x). To do this, the format is class-based, with the main object taking as arguments the order of the bessel function, and the number and size of the integration steps. For example, to integrate the function J_0(x) (ie. f(x) = 1, cf. Ogata’s paper) one would do the following:

from hankel import HankelTransform
f = lambda x: 1  #Define the input function f(x)
h = HankelTransform(nu=0,N=120,h=0.03)  #Create the HankelTransform instance
h.transform(f)  #Should give [1.0000000000003544, -9.8381428368537518e-15]

The correct answer is 1, so we have done quite well. The second element of the returned result is an estimate of the error (it is the last term in the summation). Here we used 120 steps of size 0.03. Difference applications will need to tune these parameters to get best results. In the above example, one may modify the function f and recall h.transform(f) without re-instantiating. This avoids unnecessary recalculation. Note that currently only integer orders are implemented!

Also included in the module is a subclass called SphericalHankelTransform. This is dedicated to integrating functions of the form f(x)j(x), where j(x) is a spherical Bessel function of arbitrary order. It is called in exactly the same way. Note that currently, only zeroth order is implemented for this class. An example:

from hankel import SphericalHankelTransform
f = lambda x: x/(x**3+1)  #Define the input function f(x)
h = SphericalHankelTransform(nu=0,N=500,h=0.005)  #Create the HankelTransform instance
h.transform(f)  #Should give [0.61092293340214776, -1.4163951324130801e-14]

Mathematica gives the answer as 0.610913. Note that the zeroth order spherical bessel function is just sin(x)/x.

Limitations

In terms of the implementation, the main limitation is that not any arbitrary order is supported (only integer orders for the standard case, and only zeroth order for the spherical case). This is due to a limitation in scipy, but may be addressed at some point.

Another implementation-specific limitation is that the method is not perfectly efficient in all cases. Care has been taken to make it efficient in the general sense. However, for specific orders and functions, simplifications may be made which reduce the number of trigonometric functions evaluated. For instance, for an order 0 spherical transform, the weights are analytically always identically 1.

In terms of limitations of the method, they are very dependent on the form of the function chosen. Notably, functions which tend to infinity at x=0 will be poorly approximated in this method, and will be highly dependent on the step-size parameter, as the information at low-x will be lost between 0 and the first step. As an example consider the simple function f(x) = 1 with a zeroth order spherical bessel function. This tends to 1 at x=0, rather than 0:

f = lambda x: 1
h = SphericalHankelTransform(0,120,0.03)
h.transform(f) #[1.5461236955707951, -3.5905712375161296e-16]

The true answer is pi/2, which is a difference of about 3%. Modifying the step size and number of steps to gain accuracy we find:

h = SphericalHankelTransform(0,10000,0.0001)
h.transform(f) #[1.5706713512229455, -0.00010492204442285768]

This has much better than percent accuracy, but uses almost 100 times the amount of steps. The key here is the reduction of h to “get inside” the low-x information. This limitation is amplified for cases where the function really does tend to infinity at x=0, rather than a finite positive number, such as f(x) = 1/x.

References

Based on the algorithm provided in

H. Ogata, A Numerical Integration Formula Based on the Bessel Functions, Publications of the Research Institute for Mathematical Sciences, vol. 41, no. 4, pp. 949-970, 2005.

Also draws inspiration from

Fast Edge-corrected Measurement of the Two-Point Correlation Function and the Power Spectrum Szapudi, Istvan; Pan, Jun; Prunet, Simon; Budavari, Tamas (2005) The Astrophysical Journal vol. 631 (1)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hankel-0.1.0.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

hankel-0.1.0-py2.7.egg (5.2 kB view details)

Uploaded Source

File details

Details for the file hankel-0.1.0.tar.gz.

File metadata

  • Download URL: hankel-0.1.0.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for hankel-0.1.0.tar.gz
Algorithm Hash digest
SHA256 65381ef8194cb1ae8b4f19c04143cb1a5ec43caa7b5069cb50dea79fa5678b6e
MD5 07b76ca096b6d164b117f601d86cebcb
BLAKE2b-256 8323e94853c39990b96b488b45277cf596997003c7815eee933f62e56a16aa10

See more details on using hashes here.

File details

Details for the file hankel-0.1.0-py2.7.egg.

File metadata

  • Download URL: hankel-0.1.0-py2.7.egg
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for hankel-0.1.0-py2.7.egg
Algorithm Hash digest
SHA256 eb9db2ffc3888b37502b495a6a6328aeb489f1815deaa53875e07e82fd3c9a2d
MD5 d6f02a2c03fc02d640b1deb04dad839b
BLAKE2b-256 aaad5a3fdf6863f76adc9a92802906450f27c0ebd13cc1c6a05ebe99d19b9d06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page