Skip to main content

from hansel import Crumb to find your file path.

Project description

hansel

Parametric file paths to access and build structured folder trees.

PyPI Build Status Coverage Status PyPI Downloads Code Health Scrutinizer Code Quality

It almost doesn’t have Dependencies, check how to Install it.

Usage

Quick Intro

Imagine this folder tree:

data
└── raw
    ├── 0040000
    │   └── session_1
    │       ├── anat_1
    │       └── rest_1
    ├── 0040001
    │   └── session_1
    │       ├── anat_1
    │       └── rest_1
    ├── 0040002
    │   └── session_1
    │       ├── anat_1
    │       └── rest_1
    ├── 0040003
    │   └── session_1
    │       ├── anat_1
    │       └── rest_1
    ├── 0040004
    │   └── session_1
    │       ├── anat_1
    │       └── rest_1
>>> from hansel import Crumb

# create the crumb
>>> crumb = Crumb("{base_dir}/data/raw/{subject_id}/{session_id}/{image_type}/{image}")

# set the base_dir path
>>> crumb = crumb.replace(base_dir='/home/hansel')
>>> print(str(crumb))
/home/hansel/data/raw/{subject_id}/{session_id}/{image_type}

# get the ids of the subjects
>>> subj_ids = crumb['subject_id']
>>> print(subj_ids)
['0040000', '0040001', '0040002', '0040003', '0040004', '0040005', ...

# get the paths to the subject folders, the output can be strings or crumbs,
# you choose with the ``make_crumbs`` boolean argument. Default: True.
>>> subj_paths = crumb.ls('subject_id', make_crumbs=True)
>>> print(subj_paths)
[Crumb("/home/hansel/data/raw/0040000/{session_id}/{image_type}/{image}"),
 Crumb("/home/hansel/data/raw/0040001/{session_id}/{image_type}/{image}"),
 Crumb("/home/hansel/data/raw/0040002/{session_id}/{image_type}/{image}"),
 Crumb("/home/hansel/data/raw/0040003/{session_id}/{image_type}/{image}"),
 Crumb("/home/hansel/data/raw/0040004/{session_id}/{image_type}/{image}"),
 ...

# set the image_type
>>> anat_crumb = crumb.replace(image_type='anat_1')
>>> print(anat_crumb)
/home/hansel/data/raw/{subject_id}/{session_id}/anat_1/{image}

# get the paths to the images inside the anat_1 folders
>>> anat_paths = anat_crumb.ls('image')
>>> print(anat_paths)
[Crumb("/home/hansel/data/raw/0040000/session_1/anat_1/mprage.nii.gz"),
 Crumb("/home/hansel/data/raw/0040001/session_1/anat_1/mprage.nii.gz"),
 Crumb("/home/hansel/data/raw/0040002/session_1/anat_1/mprage.nii.gz"),
 Crumb("/home/hansel/data/raw/0040003/session_1/anat_1/mprage.nii.gz"),
 Crumb("/home/hansel/data/raw/0040004/session_1/anat_1/mprage.nii.gz"),
 ...

# get the ``session_id`` of each of these ``anat_paths``
>>> sessions = [cr['session_id'] for cr in anat_paths]
>>> print(sessions)
['session_1', 'session_1', 'session_1', 'session_1', 'session_1', ...

# if you don't want the the output to be ``Crumbs`` but string paths:
>>> anat_paths = anat_crumb.ls('image', make_crumbs=False)
>>> print(anat_paths)
["/home/hansel/data/raw/0040000/session_1/anat_1/mprage.nii.gz",
 "/home/hansel/data/raw/0040001/session_1/anat_1/mprage.nii.gz",
 "/home/hansel/data/raw/0040002/session_1/anat_1/mprage.nii.gz",
 "/home/hansel/data/raw/0040003/session_1/anat_1/mprage.nii.gz",
 "/home/hansel/data/raw/0040004/session_1/anat_1/mprage.nii.gz",
 ...

# you can also use a list of ``fnmatch`` expressions to ignore certain files patterns
# using the ``ignore_list`` argument in the constructor.
# For example, the files that start with '.'.
>>> crumb = Crumb("{base_dir}/data/raw/{subject_id}/{session_id}/{image_type}/{image}",
>>>               ignore_list=['.*'])

See more quick examples after the Long Intro check More features and tricks.


Long Intro

I often find myself in a work related with structured folder paths, such as the one shown above.

I have tried many ways of solving these situations: loops, dictionaries, configuration files, etc. I always end up doing a different thing for the same problem over and over again.

This week I grew tired of it and decided to make a representation of a structured folder tree in a string and access it the most easy way.

If you look at the folder structure above I have:

  • the root directory from where it is hanging: ...data/raw,

  • many identifiers (in this case a subject identification), e.g., 0040000,

  • session identification, session_1 and

  • a data type (in this case an image type), anat_1 and rest_1.

With hansel I can represent this folder structure like this:

>>> from hansel import Crumb
>>> crumb = Crumb("{base_dir}/data/raw/{subject_id}/{session_id}/{image_type}/{image}")

Let’s say we have the structure above hanging from a base directory like /home/hansel/.

I can use the replace function to make set the base_dir parameter:

>>> crumb = crumb.replace(base_dir='/home/hansel')
>>> print(str(crumb))
/home/hansel/data/raw/{subject_id}/{session_id}/{image_type}

if I don’t need a copy of crumb, I can use the [] operator:

>>> crumb['base_dir'] = '/home/hansel'
>>> print(str(crumb))
/home/hansel/data/raw/{subject_id}/{session_id}/{image_type}

Now that the root path of my dataset is set, I can start querying my crumb path.

If I want to know the path to the existing subject_id folders:

We can use the ls function. Its output can be str or Crumb. I can choose this using the make_crumbs argument (default: True):

>>> subj_crumbs = crumb.ls('subject_id')
>>> print(subj_crumbs)
[Crumb("/home/hansel/data/raw/0040000/{session_id}/{image_type}/{image}"),
 Crumb("/home/hansel/data/raw/0040001/{session_id}/{image_type}/{image}"),
 Crumb("/home/hansel/data/raw/0040002/{session_id}/{image_type}/{image}"),
 Crumb("/home/hansel/data/raw/0040003/{session_id}/{image_type}/{image}"),
 Crumb("/home/hansel/data/raw/0040004/{session_id}/{image_type}/{image}"),
 ...

>>> subj_paths = anat_crumb.ls('subject_id', make_crumbs=False)
>>> print(subj_paths)
["/home/hansel/data/raw/0040000/{session_id}/{image_type}/{image}",
 "/home/hansel/data/raw/0040001/{session_id}/{image_type}/{image}",
 "/home/hansel/data/raw/0040002/{session_id}/{image_type}/{image}",
 "/home/hansel/data/raw/0040003/{session_id}/{image_type}/{image}",
 "/home/hansel/data/raw/0040004/{session_id}/{image_type}/{image}",
 ...

If I want to know what are the existing subject_id:

>>> subj_ids = crumb.ls('subject_id', fullpath=False)
>>> print(subj_ids)
['0040000', '0040001', '0040002', '0040003', '0040004', '0040005', ...

or

>>> subj_ids = crumb['subject_id']
>>> print(subj_ids)
['0040000', '0040001', '0040002', '0040003', '0040004', '0040005', ...

Now, if I wanted to get the path to all the images inside the anat_1 folders, I could do this:

>>> anat_crumb = crumb.replace(image_type='anat_1')
>>> print(anat_crumb)
/home/hansel/data/raw/{subject_id}/{session_id}/anat_1/{image}

or if I don’t need to keep a copy of crumb:

>>> crumb['image_type'] = 'anat_1'

# get the paths to the images inside the anat_1 folders
>>> anat_paths = crumb.ls('image')
>>> print(anat_paths)
[Crumb("/home/hansel/data/raw/0040000/session_1/anat_1/mprage.nii.gz"),
 Crumb("/home/hansel/data/raw/0040001/session_1/anat_1/mprage.nii.gz"),
 Crumb("/home/hansel/data/raw/0040002/session_1/anat_1/mprage.nii.gz"),
 Crumb("/home/hansel/data/raw/0040003/session_1/anat_1/mprage.nii.gz"),
 Crumb("/home/hansel/data/raw/0040004/session_1/anat_1/mprage.nii.gz"),
 ...

Remember that I can still access the replaced crumb arguments in each of the previous crumbs in anat_paths.

>>> subj_ids = [cr['subject_id'] for cr in anat_paths]
>>> print(subj_ids)
['0040000', '0040001', '0040002', '0040003', '0040004', '0040005', ...

>>> files = [cr['image'] for cr in anat_paths]
>>> print(files)
['mprage.nii.gz', 'mprage.nii.gz', 'mprage.nii.gz', 'mprage.nii.gz', ...

More features and tricks

There are more possibilities such as:

  • creating folder trees with a value of maps for the crumbs:

    >>> from hansel import mktree, ParameterGrid
    
    >>> crumb = Crumb("/home/hansel/raw/{subject_id}/{session_id}/{modality}/{image}")
    
    >>> values_map = {'session_id': ['session_' + str(i) for i in range(2)],
    >>>               'subject_id': ['subj_' + str(i) for i in range(3)]}
    
    >>> mktree(crumb, list(ParameterGrid(values_map)))
  • check the feasibility of a crumb path:

    >>> crumb = Crumb("/home/hansel/raw/{subject_id}/{session_id}/{modality}/{image}")
    
    # ask if there is any subject with the image 'lollipop.png'.
    >>> crumb['image'] = 'lollipop.png'
    >>> assert crumb.exists()
  • check which subjects have ‘jujube.png’ and ‘toffee.png’ files:

    >>> crumb = Crumb("/home/hansel/raw/{subject_id}/{session_id}/{modality}/{image}")
    
    >>> toffee_crumb = crumb.replace(image='toffee.png')
    >>> jujube_crumb = crumb.replace(image='jujube.png')
    
    # using sets functionality
    >>> gluttons = set(toffee_crumb['subject_id']).intersection(set(jujube_crumb['subject_id'])
    >>> print(gluttons)
    ['gretel', 'hansel']
  • unfold the whole crumb path to get the whole filetree in a list of paths:

    >>> all_images = Crumb("/home/hansel/raw/{subject_id}/{session_id}/{modality}/{image}")
    >>> all_images = crumb.unfold()
    >>> print(all_images)
    [Crumb("/home/hansel/data/raw/0040000/session_1/anat_1/mprage.nii.gz"),
     Crumb("/home/hansel/data/raw/0040000/session_1/rest_1/rest.nii.gz"),
     Crumb("/home/hansel/data/raw/0040001/session_1/anat_1/mprage.nii.gz"),
     Crumb("/home/hansel/data/raw/0040001/session_1/rest_1/rest.nii.gz"),
     Crumb("/home/hansel/data/raw/0040002/session_1/anat_1/mprage.nii.gz"),
     Crumb("/home/hansel/data/raw/0040002/session_1/rest_1/rest.nii.gz"),
     Crumb("/home/hansel/data/raw/0040003/session_1/anat_1/mprage.nii.gz"),
     Crumb("/home/hansel/data/raw/0040003/session_1/rest_1/rest.nii.gz"),
     ...
    
    # and you can ask for the value of the crumb argument in each element
    >>> print(crumbs[0]['subject_id'])
    0040000
  • Use re.match or fnmatch expressions to filter the paths:

    The syntax for crumb arguments with a regular expression is: "{<arg_name>:<reg_regex>}"

    # only the session_0 folders
    >>> s0_imgs = Crumb("/home/hansel/raw/{subject_id}/{session_id:*_0}/{modality}/{image}")
    >>> s0_imgs = crumb.unfold()
    >>> print(s0_imgs)
    [Crumb("/home/hansel/data/raw/0040000/session_0/anat_1/mprage.nii.gz"),
     Crumb("/home/hansel/data/raw/0040000/session_0/rest_1/rest.nii.gz"),
     Crumb("/home/hansel/data/raw/0040001/session_0/anat_1/mprage.nii.gz"),
     Crumb("/home/hansel/data/raw/0040001/session_0/rest_1/rest.nii.gz"),
     ...

    The default is for fnmatch expressions. If you prefer using re.match for filtering, set the regex argument to 're' in the constructor.

    # only the ``session_0`` folders
    >>> s0_imgs = Crumb("/home/hansel/raw/{subject_id}/{session_id:^.*_0$}/{modality}/{image}",
    >>>                 regex='re')
    >>> s0_imgs = crumb.unfold()
    >>> print(s0_imgs)
    [Crumb("/home/hansel/data/raw/0040000/session_0/anat_1/mprage.nii.gz"),
     Crumb("/home/hansel/data/raw/0040000/session_0/rest_1/rest.nii.gz"),
     Crumb("/home/hansel/data/raw/0040001/session_0/anat_1/mprage.nii.gz"),
     Crumb("/home/hansel/data/raw/0040001/session_0/rest_1/rest.nii.gz"),
     ...

More functionalities, ideas and comments are welcome.

Dependencies

Please see the requirements.txt file. Before installing this package, install its dependencies with:

pip install -r requirements.txt

Install

It works on Python 3.4, 3.5 and 2.7. For Python 2.7 install pathlib2 as well.

This package uses setuptools. You can install it running:

python setup.py install

If you already have the dependencies listed in requirements.txt installed, to install in your home directory, use:

python setup.py install --user

To install for all users on Unix/Linux:

python setup.py build
sudo python setup.py install

You can also install it in development mode with:

python setup.py develop

Development

Code

Github

You can check the latest sources with the command:

git clone https://www.github.com/alexsavio/hansel.git

or if you have write privileges:

git clone git@github.com:alexsavio/hansel.git

If you are going to create patches for this project, create a branch for it from the master branch.

We tag stable releases in the repository with the version number.

Testing

We are using py.test to help us with the testing.

Otherwise you can run the tests executing:

python setup.py test

or

py.test

or

make test

Changelog

Version 0.5.3

  • Add Crumbs.keys() function.

  • Rename utils.remove_duplicates() to utils.rm_dups()

Version 0.5.2

  • Add check_path function

  • Fix Crumb.split function to return the not defined part of the crumb.

Version 0.5.1

  • Add ‘re.ignorecase’ option for the regex argument in the constructor.

Version 0.5.0

  • Add Python 2.7 compatibility. Friends don’t let friends use Python 2.7!

Version 0.4.2

  • Improve documentation in README.

  • Rename member _argreg to patterns, so the user can use it to manage the argument patterns.

Version 0.4.1

Version 0.4.0

  • Fill CHANGES.rst.

  • All outputs from Crumb.ls function will be sorted.

  • Add regular expressions or fnmatch option for crumb arguments.

  • Change exists behaviour. Now the empty crumb arguments will return False when exist().

  • Code clean up.

  • Fix bugs.

Version 0.3.1

  • Fix README.

  • Code clean up.

Version 0.3.0

  • Add _argval member, a dict which stores crumb arguments replacements.

  • Add tests.

  • Remove rm_dups option in Crumb.ls function.

  • Remove conversion to Paths when Crumb has no crumb arguments in Crumb.ls.

Version 0.2.0

  • Add ignore_list parameter in Crumb constructor.

Version 0.1.1

  • Add Crumb.unfold function.

  • Move mktree out of Crumb class.

Version 0.1.0

  • Simplify code.

  • Increase test coverage.

  • Add exist_check to Crumb.ls function.

  • Fix bugs.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hansel-0.5.3.tar.gz (16.9 kB view details)

Uploaded Source

File details

Details for the file hansel-0.5.3.tar.gz.

File metadata

  • Download URL: hansel-0.5.3.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for hansel-0.5.3.tar.gz
Algorithm Hash digest
SHA256 03a448e253666ac8be571fd3362147fa001c68ecd68e1c589f5843dea2ba1d4f
MD5 8853a3fa279d801ae0e8b3df3787d710
BLAKE2b-256 7356448108ce11b9581c0f8e445ce76d4ef6b84d9c066689b1b86f12b8deab45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page