Skip to main content

Calculate the distance between 2 points on Earth.

Project description

Haversine Build Status

Calculate the distance (in various units) between two points on Earth using their latitude and longitude.

Installation

$ pip install haversine

Usage

Calculate the distance between Lyon and Paris

from haversine import haversine, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)

haversine(lyon, paris)
>> 392.2172595594006  # in kilometers

haversine(lyon, paris, unit=Unit.MILES)
>> 243.71201856934454  # in miles

# you can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71201856934454  # in miles

haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516  # in nautical miles

The haversine.Unit enum contains all supported units:

import haversine

print(tuple(haversine.Unit))

outputs

(<Unit.FEET: 'ft'>, <Unit.INCHES: 'in'>, <Unit.KILOMETERS: 'km'>,
 <Unit.METERS: 'm'>, <Unit.MILES: 'mi'>, <Unit.NAUTICAL_MILES: 'nmi'>)

Performance optimisation for distances between all points in two vectors

You will need to add numpy in order to gain performance with vectors.

You can then do this:

from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)

>> array([ 392.21725956, 6163.43638211])

It is generally slower to use haversine_vector to get distance between two points, but can be really fast to compare distances between two vectors.

Combine matrix

You can generate a matrix of all combinations between coordinates in different vectors by setting comb parameter as True.

from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
london = (51.509865, -0.118092)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, london], [paris, new_york], Unit.KILOMETERS, comb=True)

>> array([[ 392.21725956,  343.37455271],
 	  [6163.43638211, 5586.48447423]])

The output array from the example above returns the following table:

Paris New York
Lyon Lyon <-> Paris Lyon <-> New York
London London <-> Paris London <-> New York

By definition, if you have a vector a with n elements, and a vector b with m elements. The result matrix M would be $n x m$ and a element M[i,j] from the matrix would be the distance between the ith coordinate from vector a and jth coordinate with vector b.

Contributing

Clone the project.

Install pipenv.

Run pipenv install --dev

Launch test with pipenv run pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

haversine-2.3.0.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

haversine-2.3.0-py2.py3-none-any.whl (5.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file haversine-2.3.0.tar.gz.

File metadata

  • Download URL: haversine-2.3.0.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.3

File hashes

Hashes for haversine-2.3.0.tar.gz
Algorithm Hash digest
SHA256 72c76855ac25e6ad054c7ed380e95c1a96803185f005dd11f40ccaa9620b551f
MD5 ff2d43a74195ec00c42ccd5da2a3f3de
BLAKE2b-256 203af96adec3c7b50e9483149b906636e08ab01dd54de3da2f70b2d4ab769bfa

See more details on using hashes here.

File details

Details for the file haversine-2.3.0-py2.py3-none-any.whl.

File metadata

  • Download URL: haversine-2.3.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 5.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.3

File hashes

Hashes for haversine-2.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a0f2ea3cb419def98a8eb7a3fd0f0b3d97d679c160bae0699809410f33adfcb9
MD5 bb8e6e409fd8452f7334539b3732983d
BLAKE2b-256 f452a13286844780c7b1740edbbee8a8f0524e2a6d51c068b59dda39a6a119f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page