Skip to main content

Calculate the distance between 2 points on Earth.

Project description

Haversine Build Status

Calculate the distance (in various units) between two points on Earth using their latitude and longitude.

Installation

$ pip install haversine

Usage

Calculate the distance between Lyon and Paris

from haversine import haversine, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)

haversine(lyon, paris)
>> 392.2172595594006  # in kilometers

haversine(lyon, paris, unit=Unit.MILES)
>> 243.71201856934454  # in miles

# you can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71201856934454  # in miles

haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516  # in nautical miles

The haversine.Unit enum contains all supported units:

import haversine

print(tuple(haversine.Unit))

outputs

(<Unit.FEET: 'ft'>, <Unit.INCHES: 'in'>, <Unit.KILOMETERS: 'km'>,
 <Unit.METERS: 'm'>, <Unit.MILES: 'mi'>, <Unit.NAUTICAL_MILES: 'nmi'>)

Performance optimisation for distances between all points in two vectors

You will need to add numpy in order to gain performance with vectors.

You can then do this:

from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)

>> array([ 392.21725956, 6163.43638211])

It is generally slower to use haversine_vector to get distance between two points, but can be really fast to compare distances between two vectors.

Combine matrix

You can generate a matrix of all combinations between coordinates in different vectors by setting comb parameter as True.

from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
london = (51.509865, -0.118092)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, london], [paris, new_york], Unit.KILOMETERS, comb=True)

>> array([[ 392.21725956,  343.37455271],
 	  [6163.43638211, 5586.48447423]])

The output array from the example above returns the following table:

Paris New York
Lyon Lyon <-> Paris Lyon <-> New York
London London <-> Paris London <-> New York

By definition, if you have a vector a with n elements, and a vector b with m elements. The result matrix M would be $n x m$ and a element M[i,j] from the matrix would be the distance between the ith coordinate from vector a and jth coordinate with vector b.

Contributing

Clone the project.

Install pipenv.

Run pipenv install --dev

Launch test with pipenv run pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

haversine-2.3.1.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

haversine-2.3.1-py2.py3-none-any.whl (5.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file haversine-2.3.1.tar.gz.

File metadata

  • Download URL: haversine-2.3.1.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.3

File hashes

Hashes for haversine-2.3.1.tar.gz
Algorithm Hash digest
SHA256 75a7f859b3fb6df746564ca66ad1fd5b4052cdbab3d74ff16e8f1a7c3d4a26a5
MD5 8350c50907c720fbd88c64dac10d91a3
BLAKE2b-256 a76932aa99257632c26e2402a754ebb29b97b7810d840080c8af0bf198a227fa

See more details on using hashes here.

File details

Details for the file haversine-2.3.1-py2.py3-none-any.whl.

File metadata

  • Download URL: haversine-2.3.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 5.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.3

File hashes

Hashes for haversine-2.3.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f7e31d61d0ec4562a6fe1efe01304d8125ea27db2dd81b6757ae0974a5572842
MD5 de16102d6399ebfe105c108911808470
BLAKE2b-256 6363703b7bdc36de8992b31c37461e406a70b0a6dcb4602e96b7aa2621e23929

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page