Skip to main content

A package for standardizing hierarchical object data

Project description

The Hierarchical Data Modeling Framework, or HDMF, is a Python package for working with hierarchical data. It provides APIs for specifying data models, reading and writing data to different storage backends, and representing data with Python object.

Documentation of HDMF can be found at https://hdmf.readthedocs.io

Latest Release

https://badge.fury.io/py/hdmf.svg https://anaconda.org/conda-forge/hdmf/badges/version.svg

Build Status

Linux

Windows and macOS

https://circleci.com/gh/hdmf-dev/hdmf.svg?style=shield https://dev.azure.com/hdmf-dev/hdmf/_apis/build/status/hdmf-dev.hdmf?branchName=dev

Conda

https://circleci.com/gh/conda-forge/hdmf-feedstock.svg?style=shield

Overall Health

https://codecov.io/gh/hdmf-dev/hdmf/branch/dev/graph/badge.svg Requirements Status Documentation Status

Installation

See the HDMF documentation for details http://hdmf.readthedocs.io/en/latest/getting_started.html#installation

Code of Conduct

This project and everyone participating in it is governed by our code of conduct guidelines. By participating, you are expected to uphold this code.

Contributing

For details on how to contribute to HDMF see our contribution guidelines.

LICENSE

“hdmf” Copyright (c) 2017-2019, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

  3. Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such enhancements or derivative works thereof, in binary and source code form.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hdmf-1.3.2.tar.gz (155.7 kB view details)

Uploaded Source

Built Distribution

hdmf-1.3.2-py2.py3-none-any.whl (101.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file hdmf-1.3.2.tar.gz.

File metadata

  • Download URL: hdmf-1.3.2.tar.gz
  • Upload date:
  • Size: 155.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.0

File hashes

Hashes for hdmf-1.3.2.tar.gz
Algorithm Hash digest
SHA256 f9d740df86cea85f850d059cb589b559cd6ad6ed47986797e3ec5594e46b8d18
MD5 1d2e250e57ff10429c80035dc538c3f7
BLAKE2b-256 3dc72d43ff77f9626f7afe0f29d1686f9a84213ff81f340919592d485dcb8d99

See more details on using hashes here.

Provenance

File details

Details for the file hdmf-1.3.2-py2.py3-none-any.whl.

File metadata

  • Download URL: hdmf-1.3.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 101.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.0

File hashes

Hashes for hdmf-1.3.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 4a44c988c07d1ebb1ec25ae35f86c5b5d96b19d532d51bab22953fb1cf0a5868
MD5 dc849a8307e0cfe304a07f55eb5c1cea
BLAKE2b-256 886422c262e1a5b3a82c7c62fdcaa9f7712f167437ea1370ab8cc2b2cbde23f8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page