Skip to main content

High Dynamic Range histogram in native python

Project description

High Dynamic Range Histogram python implementation

https://badges.gitter.im/JoinChat.svg https://travis-ci.org/HdrHistogram/HdrHistogram_py.svg?branch=master

This repository contains a port to python of most of the original Java HDR Histogram library:

  • Basic histogram value recording
    • record value

    • record value with correction for coordinated omission

  • Supports 16-bit, 32-bit and 64-bit counters

  • All histogram basic query APIs
    • get value at percentile

    • get total count

    • get min value, max value, mean, standard deviation

  • All iterators are implemented: all values, recorded, percentile, linear, logarithmic

  • Text file histogram log writer and log reader (.hlog file)

  • Dump histogram in plot-friendly percentile table (.hgrm format)

  • Encoding and decoding Hdr Histogram “histoblobs” (HdrHistogram V2 format only, V1 and V0 not supported)

  • supports python 3.x (0.9.2 is the latest release supporting python 2.7)

Histogram V2 format encoding inter-operability with Java and C versions verified through unit test code.

Python API

Users of this library can generally play one of 2 roles (sometimes both):

  • record values into 1 or more histograms (histogram provisioning)

  • analyze and display histogram content and characteristics (histogram query)

In distributed cases, histogram provisioning can be be done remotely (and possibly in multiple locations) then aggregated in a central place for analysis.

A histogram instance can be created using the HdrHistogram class and specifying the minimum and maximum trackable value and the number of precision digits desired. For example to create a histogram that can count values in the [1..3600000] range and 1% precision (this could be for example to track latencies in the range [1 msec..1 hour]):

histogram = HdrHistogram(1, 60 * 60 * 1000, 2)

By default counters are 64-bit while 16 or 32-bit counters can be specified (word_size option set to 2 or 4 bytes). Note that counter overflow is not tested in this version so be careful when using smaller counter sizes.

Once created it is easy to add values to a histogram:

histogram.record_value(latency)

If the code that generates the values is subject to Coordinated Omission, use the corrected version of that method (example when the expected interval is 10 msec):

histogram.record_corrected_value(latency, 10)

At any time, the histogram can be queried to return any property, such as getting the total number of values recorded or the value at a given percentile:

count = histogram.get_total_count()
value = histogram.get_value_at_percentile(99.9)

Recorded values can be iterated over using the recorded iterator:

for item in histogram.get_recorded_iterator():
    print('value=%f count=%d percentile=%f' %
            item.value_iterated_to,
            item.count_added_in_this_iter_step,
            item.percentile)

A histoblob (base64 encoded/compressed histogram) is a convenient way to serialize and store a histogram instance without losing precision (lossless). The resulting base 64 string can then be stored inside a standard container such as a JSON document, XML, CSV…

The histoblob for a histogram instance can be generated by calling the compress method:

histoblob = histogram.encode()

A histoblob can be decoded into a histogram instance with the decode method:

decoded_histogram = HdrHistogram.decode(histoblob)
count = decoded_histogram.get_total_count()

In the case of aggregation, the decode_and_add method can be used:

aggregation_histogram.decode_and_add(histoblob)

If you want to print the histogram in a plotter-friendly percentile tabular format (.hgrm):

histogram.output_percentile_distribution(file, scaling_ratio)

For additional help on how to use the API:

  • browse through the python code and check the API documentation in the comment section for each method (where available)

  • the best documentation is by looking at the test code under the test directory

The test code (https://github.com/HdrHistogram/HdrHistogram_py/blob/master/test/test_hdrhistogram.py) pretty much covers every API.

Installation

Pre-requisites:

Make sure you have python 3.x, and pip installed

Binary installation

This is the preferred method for most installations where you only need to use this library. Use a python virtual environment if needed.

pip install hdrhistogram

Note that this will require a C compiler to compile small C plugins (related to low level encoding/decoding). Wheel binary packages are not available yet in PyPI (work in progress) but can be built using the python setuptools procedure from the git source code (see below).

Source code installation Package build and Unit Testing

This is the method to use for any development work with this library or if you want to read or run the test code.

Install the unit test automation harness tox and hdrhistogram from github:

pip install tox
# cd to the proper location to clone the repository
git clone https://github.com/HdrHistogram/HdrHistogram_py.git
cd HdrHistogram_py

Running tox will execute the following targets:

  • pep8/flake8 for syntax and indentation checking

  • python unit test code

  • pylint

Just run tox without any argument (the first run will take more time as tox will setup the execution environment and download the necessary packages):

$ tox
GLOB sdist-make: /openstack/pyhdr/HdrHistogram_py/setup.py
31 passed, 2 skipped in 5.14 seconds
py3 inst-nodeps: /openstack/pyhdr/HdrHistogram_py/.tox/dist/hdrhistogram-0.5.2.zip
py3 runtests: PYTHONHASHSEED='4015036329'
py3 runtests: commands[0] | py.test -q -s --basetemp=/openstack/pyhdr/HdrHistogram_py/.tox/py3/tmp
s......................ss.........
31 passed, 3 skipped in 5.11 seconds
pep8 inst-nodeps: /openstack/pyhdr/HdrHistogram_py/.tox/dist/hdrhistogram-0.5.2.zip
pep8 runtests: PYTHONHASHSEED='4015036329'
pep8 runtests: commands[0] | flake8 hdrh test
lint inst-nodeps: /openstack/pyhdr/HdrHistogram_py/.tox/dist/hdrhistogram-0.5.2.zip
lint installed: astroid==1.5.3,backports.functools-lru-cache==1.4,configparser==3.5.0,enum34==1.1.6,flake8==3.3.0,hdrhistogram==0.5.2,isort==4.2.15,lazy-object-proxy==1.3.1,mccabe==0.6.1,pbr==3.1.1,py==1.4.34,pycodestyle==2.3.1,pyflakes==1.5.0,pylint==1.7.1,pytest==3.1.2,singledispatch==3.4.0.3,six==1.10.0,wrapt==1.10.10
lint runtests: PYTHONHASHSEED='4015036329'
lint runtests: commands[0] | pylint --rcfile pylint.rc hdrh test

--------------------------------------------------------------------
Your code has been rated at 10.00/10 (previous run: 10.00/10, +0.00)

________________________________________________________________ summary ________________________________________________________________
  py3: commands succeeded
  pep8: commands succeeded
  lint: commands succeeded
  congratulations :)

Display percentile table (.hgrm) from a histoblob (dump_hdrh)

To print the .hgrm percentile table of any histoblob, use the dump_hdrh tool (installed along with the package).

$ dump_hdrh

Usage: dump_hdrh [<string encoded hdr histogram>]*

You can pass one or more histoblobs to the tool:

$ dump_hdrh 'HISTFAAAACl4nJNpmSzMwMDAxQABzFCaEUzOmNZg/wEi0NzIyPSYlWmpGBMAh4gG4A=='

Dumping histogram: HISTFAAAACl4nJNpmSzMwMDAxQABzFCaEUzOmNZg/wEi0NzIyPSYlWmpGBMAh4gG4A==

      Value     Percentile TotalCount 1/(1-Percentile)

139647.000 0.000000000000          1           1.00
139647.000 0.100000000000          1           1.11
139647.000 0.190000000000          1           1.23
139647.000 0.271000000000          1           1.37
187135.000 0.343900000000          2           1.52
187135.000 0.409510000000          2           1.69
187135.000 0.468559000000          2           1.88
187135.000 0.521703100000          2           2.09
187135.000 0.569532790000          2           2.32
187135.000 0.612579511000          2           2.58
187135.000 0.651321559900          2           2.87
477695.000 0.686189403910          3           3.19
477695.000 1.000000000000          3
#[Mean    =   268074.667, StdDeviation   =   149397.390]
#[Max     =   477695.000, TotalCount     =        3.000]
#[Buckets =           14, SubBuckets     =         2048]

Aggregation of Distributed Histograms

Aggregation of multiple histograms into 1 is useful in cases where tools that generate these individual histograms have to run in a distributed way in order to scale sufficiently. As an example, the wrk2 tool (https://github.com/giltene/wrk2.git) is a great tool for measuring the latency of HTTP requests with a large number of connections. Although this tool can support thousands of connections per process, some setups require massive scale in the order of hundreds of thousands of connections which require running a large number of instances of wrk processes, possibly on a large number of servers. Given that each instance of wrk can generate a separate histogram, assessing the scale of the entire system requires aggregating all these histograms into 1 in a way that does not impact the accuracy of the results. So there are 2 problems to solve:

  • find a way to properly aggregate multiple histograms without losing any detail

  • find a way to transport all these histograms into a central place

This library provides a solution for the aggregation part of the problem:

  • reuse the HDR histogram compression format version 1 to encode and compress a complete histogram that can be sent over the wire to the aggregator

  • provide python APIs to easily and efficiently:

    • compress an histogram instance into a transportable string

    • decompress a compressed histogram and add it to an existing histogram

Refer to the unit test code (test/test_hdrhistogram.py) to see how these APIs can be used.

Histogram wire encoding and size

Histograms are encoded using the HdrHistogram V2 format which is based on an adapted ZigZag LEB128 encoding where:

  • consecutive zero counters are encoded as a negative number representing the count of consecutive zeros

  • non zero counter values are encoded as a positive number

An empty histogram (all zeros counters) is encoded in exactly 48 bytes regardless of the counter size. A typical histogram (2 digits precision 1 usec to 1 day range) can be encoded in less than the typical MTU size of 1500 bytes.

This format is compatible with the HdrHistogram Java and C implementations.

Performance

Histogram value recording has the same cost characteristics than the original Java version since it is a direct port (fixed cost for CPU and reduced memory usage). Encoding and decoding in the python version is very fast and close to native performance thanks to the use of:

  • integrated C extensions (native C code called from python) that have been developed to handle the low-level byte encoding/decoding/addition work at native speed

  • native compression library (zlib and base64)

On a macbook pro (2019 Intel Core i7 @ 2.6GHz) and Linux server (Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz):

Operation Time in usec

Macbook

Linux

record a single value

1

1

encode typical histogram

75

68

decode and add

100

110

The typical histogram is defined as one that has 30% of 64-bit buckets filled with sequential values starting at 20% of the array, for a range of 1 usec to 24 hours and 2 digits precision. This represents a total of 3968 buckets, of which the first 793 are zeros, the next 1190 buckets have a sequential/unique value and all remaining buckets are zeros, for an encoded length of 3116 bytes. Most real-world histograms have a much sparser pattern that will yield a lower encoding and decoding time. Decode and add will decode the encoded histogram and add its content to an existing histogram.

To measure the performance of encoding and decoding and get the profiling, you must clone the github repository with git, install it (in a virtual environment if needed) and call pytest with the –runperf option. The 2 profiling functions will provide the profiling information for encoding and decoding the typical histogram 1000 times (so the time values shown are seconds for 1000 decodes/decodes).

Example of run on Linux:

# pytest -s -k test_cod_perf --runperf
=============================================================================== test session starts ================================================================================
platform linux -- Python 3.6.8, pytest-6.0.1, py-1.9.0, pluggy-0.13.1
rootdir: /root/HdrHistogram_py, configfile: tox.ini
collected 39 items / 38 deselected / 1 selected

test_hdrhistogram.py 0:00:00.061559
         35305 function calls in 0.068 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
      1    0.000    0.000    0.068    0.068 <string>:1(<module>)
   2000    0.002    0.000    0.002    0.000 __init__.py:483(string_at)
   1000    0.000    0.000    0.004    0.000 base64.py:51(b64encode)
      1    0.000    0.000    0.000    0.000 codec.py:119(__init__)
      1    0.000    0.000    0.000    0.000 codec.py:154(_init_counts)
      1    0.000    0.000    0.000    0.000 codec.py:172(get_counts)
   1000    0.004    0.000    0.050    0.000 codec.py:214(compress)
      1    0.000    0.000    0.000    0.000 codec.py:256(__init__)
      1    0.000    0.000    0.000    0.000 codec.py:285(get_counts)
   1000    0.002    0.000    0.061    0.000 codec.py:291(encode)
      1    0.000    0.000    0.000    0.000 codec.py:65(get_encoding_cookie)
      1    0.000    0.000    0.000    0.000 codec.py:69(get_compression_cookie)
   2190    0.001    0.000    0.001    0.000 histogram.py:142(_clz)
   2190    0.002    0.000    0.003    0.000 histogram.py:153(_get_bucket_index)
   2190    0.001    0.000    0.001    0.000 histogram.py:159(_get_sub_bucket_index)
   1190    0.000    0.000    0.000    0.000 histogram.py:162(_counts_index)
   1190    0.001    0.000    0.003    0.000 histogram.py:172(_counts_index_for)
   1190    0.001    0.000    0.005    0.000 histogram.py:177(record_value)
   1190    0.000    0.000    0.000    0.000 histogram.py:232(get_value_from_sub_bucket)
   1190    0.001    0.000    0.001    0.000 histogram.py:235(get_value_from_index)
      1    0.000    0.000    0.000    0.000 histogram.py:34(get_bucket_count)
   1000    0.000    0.000    0.061    0.000 histogram.py:419(encode)
   1000    0.001    0.000    0.003    0.000 histogram.py:462(get_counts_array_index)
      1    0.000    0.000    0.000    0.000 histogram.py:65(__init__)
      1    0.001    0.001    0.006    0.006 test_hdrhistogram.py:408(fill_hist_counts)
      1    0.000    0.000    0.068    0.068 test_hdrhistogram.py:526(check_cod_perf)
   5000    0.000    0.000    0.000    0.000 {built-in method _ctypes.addressof}
   1000    0.004    0.000    0.004    0.000 {built-in method binascii.b2a_base64}
   2190    0.000    0.000    0.000    0.000 {built-in method builtins.bin}
      1    0.000    0.000    0.068    0.068 {built-in method builtins.exec}
   3190    0.000    0.000    0.000    0.000 {built-in method builtins.len}
   1190    0.000    0.000    0.000    0.000 {built-in method builtins.max}
   1190    0.000    0.000    0.000    0.000 {built-in method builtins.min}
      1    0.000    0.000    0.000    0.000 {built-in method builtins.print}
      1    0.000    0.000    0.000    0.000 {built-in method math.ceil}
      1    0.000    0.000    0.000    0.000 {built-in method math.floor}
      4    0.000    0.000    0.000    0.000 {built-in method math.log}
      2    0.000    0.000    0.000    0.000 {built-in method math.pow}
      2    0.000    0.000    0.000    0.000 {built-in method now}
   1000    0.006    0.000    0.006    0.000 {built-in method pyhdrh.encode}
   1000    0.039    0.000    0.039    0.000 {built-in method zlib.compress}
      1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

And for decoding:

# pytest -s -k test_dec_perf --runperf
=============================================================================== test session starts ================================================================================
platform linux -- Python 3.6.8, pytest-6.0.1, py-1.9.0, pluggy-0.13.1
rootdir: /root/HdrHistogram_py, configfile: tox.ini
collected 39 items / 38 deselected / 1 selected

test_hdrhistogram.py 0:00:00.106705
         118327 function calls in 0.113 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
      1    0.000    0.000    0.113    0.113 <string>:1(<module>)
      2    0.000    0.000    0.000    0.000 __init__.py:483(string_at)
   1000    0.001    0.000    0.001    0.000 base64.py:34(_bytes_from_decode_data)
      1    0.000    0.000    0.000    0.000 base64.py:51(b64encode)
   1000    0.001    0.000    0.010    0.000 base64.py:65(b64decode)
   1001    0.001    0.000    0.019    0.000 codec.py:119(__init__)
   1001    0.004    0.000    0.004    0.000 codec.py:154(_init_counts)
   1000    0.002    0.000    0.012    0.000 codec.py:157(init_counts)
   3001    0.000    0.000    0.000    0.000 codec.py:172(get_counts)
   1000    0.002    0.000    0.018    0.000 codec.py:175(_decompress)
      1    0.000    0.000    0.000    0.000 codec.py:214(compress)
   1001    0.002    0.000    0.002    0.000 codec.py:256(__init__)
   3001    0.001    0.000    0.001    0.000 codec.py:285(get_counts)
      1    0.000    0.000    0.000    0.000 codec.py:291(encode)
   1000    0.003    0.000    0.032    0.000 codec.py:313(decode)
   1000    0.001    0.000    0.011    0.000 codec.py:359(add)
   3000    0.001    0.000    0.001    0.000 codec.py:56(get_cookie_base)
   1000    0.000    0.000    0.001    0.000 codec.py:59(get_word_size_in_bytes_from_cookie)
      1    0.000    0.000    0.000    0.000 codec.py:65(get_encoding_cookie)
   1001    0.000    0.000    0.000    0.000 codec.py:69(get_compression_cookie)
      1    0.000    0.000    0.000    0.000 expression.py:81(lex)
   7191    0.003    0.000    0.005    0.000 histogram.py:142(_clz)
   7191    0.006    0.000    0.011    0.000 histogram.py:153(_get_bucket_index)
   7191    0.002    0.000    0.002    0.000 histogram.py:159(_get_sub_bucket_index)
   1190    0.000    0.000    0.000    0.000 histogram.py:162(_counts_index)
   1190    0.001    0.000    0.003    0.000 histogram.py:172(_counts_index_for)
   1190    0.001    0.000    0.005    0.000 histogram.py:177(record_value)
   10190   0.002    0.000    0.002    0.000 histogram.py:232(get_value_from_sub_bucket)
   4190    0.002    0.000    0.003    0.000 histogram.py:235(get_value_from_index)
   2000    0.002    0.000    0.005    0.000 histogram.py:244(get_lowest_equivalent_value)
   4000    0.004    0.000    0.013    0.000 histogram.py:252(get_highest_equivalent_value)
   1000    0.000    0.000    0.000    0.000 histogram.py:330(get_total_count)
   1001    0.007    0.000    0.007    0.000 histogram.py:34(get_bucket_count)
   2000    0.001    0.000    0.007    0.000 histogram.py:346(get_max_value)
   2000    0.001    0.000    0.007    0.000 histogram.py:351(get_min_value)
      1    0.000    0.000    0.000    0.000 histogram.py:419(encode)
   1000    0.001    0.000    0.006    0.000 histogram.py:445(set_internal_tacking_values)
      1    0.000    0.000    0.000    0.000 histogram.py:462(get_counts_array_index)
   1000    0.005    0.000    0.035    0.000 histogram.py:513(add)
   1000    0.001    0.000    0.106    0.000 histogram.py:544(decode_and_add)
   1000    0.002    0.000    0.071    0.000 histogram.py:563(decode)
   1001    0.008    0.000    0.037    0.000 histogram.py:65(__init__)
      1    0.001    0.001    0.006    0.006 test_hdrhistogram.py:408(fill_hist_counts)
      1    0.000    0.000    0.113    0.113 test_hdrhistogram.py:539(check_dec_perf)
   3005    0.000    0.000    0.000    0.000 {built-in method _ctypes.addressof}
   1000    0.008    0.000    0.008    0.000 {built-in method binascii.a2b_base64}
      1    0.000    0.000    0.000    0.000 {built-in method binascii.b2a_base64}
   7191    0.001    0.000    0.001    0.000 {built-in method builtins.bin}
      1    0.000    0.000    0.113    0.113 {built-in method builtins.exec}
   2000    0.000    0.000    0.000    0.000 {built-in method builtins.isinstance}
   9192    0.001    0.000    0.001    0.000 {built-in method builtins.len}
   3190    0.001    0.000    0.001    0.000 {built-in method builtins.max}
   3190    0.001    0.000    0.001    0.000 {built-in method builtins.min}
      1    0.000    0.000    0.000    0.000 {built-in method builtins.print}
   1001    0.000    0.000    0.000    0.000 {built-in method math.ceil}
   1001    0.000    0.000    0.000    0.000 {built-in method math.floor}
   4004    0.001    0.000    0.001    0.000 {built-in method math.log}
   2002    0.000    0.000    0.000    0.000 {built-in method math.pow}
      2    0.000    0.000    0.000    0.000 {built-in method now}
   1000    0.008    0.000    0.008    0.000 {built-in method pyhdrh.add_array}
   1000    0.007    0.000    0.007    0.000 {built-in method pyhdrh.decode}
      1    0.000    0.000    0.000    0.000 {built-in method pyhdrh.encode}
      1    0.000    0.000    0.000    0.000 {built-in method zlib.compress}
   1000    0.014    0.000    0.014    0.000 {built-in method zlib.decompress}
      1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
   2000    0.001    0.000    0.001    0.000 {method 'from_buffer_copy' of '_ctypes.PyCStructType' objects}

Limitations, Caveats and Known Issues

The latest features and bug fixes of the original HDR histogram library may not be available in this python port. Examples of notable features/APIs not implemented:

  • concurrency support (AtomicHistogram, ConcurrentHistogram…)

  • DoubleHistogram

  • histogram auto-resize

  • recorder function

This implementation has byte endianess encoding issues when used with PyPy due to a limitation of the PyPy code (see https://github.com/HdrHistogram/HdrHistogram_py/issues/13).

The current implementation has issues running on Windows 32-bit systems (library crashing during decode).

Dependencies

The only dependency (outside of using pytest and tox for the unit testing) is the small pbr python package which takes care of the versioning (among other things).

Publishing a New Release to PyPI

To create a new release, apply a new release tag then create a new Release using github (this requires right permission). The github CI will build the distributions and push to PyPI.

Licensing

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Contribution

External contribution, forks and GitHub pull requests are welcome. For any discussion, head to the gitter HdrHistogram space at https://gitter.im/HdrHistogram/HdrHistogram

Acknowledgements

The python code was directly ported from the original HDR Histogram Java and C libraries:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hdrhistogram-0.10.3.tar.gz (60.1 kB view details)

Uploaded Source

Built Distributions

hdrhistogram-0.10.3-pp310-pypy310_pp73-win_amd64.whl (40.1 kB view details)

Uploaded PyPy Windows x86-64

hdrhistogram-0.10.3-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

hdrhistogram-0.10.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (38.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hdrhistogram-0.10.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (36.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hdrhistogram-0.10.3-pp39-pypy39_pp73-win_amd64.whl (40.1 kB view details)

Uploaded PyPy Windows x86-64

hdrhistogram-0.10.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

hdrhistogram-0.10.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (38.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hdrhistogram-0.10.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (36.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hdrhistogram-0.10.3-pp38-pypy38_pp73-win_amd64.whl (40.1 kB view details)

Uploaded PyPy Windows x86-64

hdrhistogram-0.10.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

hdrhistogram-0.10.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (38.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hdrhistogram-0.10.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (36.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hdrhistogram-0.10.3-pp37-pypy37_pp73-win_amd64.whl (40.1 kB view details)

Uploaded PyPy Windows x86-64

hdrhistogram-0.10.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

hdrhistogram-0.10.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (38.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hdrhistogram-0.10.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (36.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

hdrhistogram-0.10.3-cp312-cp312-win_amd64.whl (40.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

hdrhistogram-0.10.3-cp312-cp312-win32.whl (39.6 kB view details)

Uploaded CPython 3.12 Windows x86

hdrhistogram-0.10.3-cp312-cp312-musllinux_1_1_x86_64.whl (52.5 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

hdrhistogram-0.10.3-cp312-cp312-musllinux_1_1_i686.whl (53.5 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

hdrhistogram-0.10.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (48.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

hdrhistogram-0.10.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (48.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hdrhistogram-0.10.3-cp312-cp312-macosx_10_9_x86_64.whl (36.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

hdrhistogram-0.10.3-cp311-cp311-win_amd64.whl (40.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

hdrhistogram-0.10.3-cp311-cp311-win32.whl (39.6 kB view details)

Uploaded CPython 3.11 Windows x86

hdrhistogram-0.10.3-cp311-cp311-musllinux_1_1_x86_64.whl (52.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

hdrhistogram-0.10.3-cp311-cp311-musllinux_1_1_i686.whl (53.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

hdrhistogram-0.10.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (47.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

hdrhistogram-0.10.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (48.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hdrhistogram-0.10.3-cp311-cp311-macosx_10_9_x86_64.whl (36.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

hdrhistogram-0.10.3-cp310-cp310-win_amd64.whl (40.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

hdrhistogram-0.10.3-cp310-cp310-win32.whl (39.6 kB view details)

Uploaded CPython 3.10 Windows x86

hdrhistogram-0.10.3-cp310-cp310-musllinux_1_1_x86_64.whl (52.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

hdrhistogram-0.10.3-cp310-cp310-musllinux_1_1_i686.whl (53.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

hdrhistogram-0.10.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (47.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

hdrhistogram-0.10.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (48.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hdrhistogram-0.10.3-cp310-cp310-macosx_10_9_x86_64.whl (36.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

hdrhistogram-0.10.3-cp39-cp39-win_amd64.whl (40.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

hdrhistogram-0.10.3-cp39-cp39-win32.whl (39.6 kB view details)

Uploaded CPython 3.9 Windows x86

hdrhistogram-0.10.3-cp39-cp39-musllinux_1_1_x86_64.whl (51.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

hdrhistogram-0.10.3-cp39-cp39-musllinux_1_1_i686.whl (52.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

hdrhistogram-0.10.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (47.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

hdrhistogram-0.10.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (48.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hdrhistogram-0.10.3-cp39-cp39-macosx_10_9_x86_64.whl (36.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

hdrhistogram-0.10.3-cp38-cp38-win_amd64.whl (40.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

hdrhistogram-0.10.3-cp38-cp38-win32.whl (39.6 kB view details)

Uploaded CPython 3.8 Windows x86

hdrhistogram-0.10.3-cp38-cp38-musllinux_1_1_x86_64.whl (52.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

hdrhistogram-0.10.3-cp38-cp38-musllinux_1_1_i686.whl (53.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

hdrhistogram-0.10.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (48.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

hdrhistogram-0.10.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (49.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hdrhistogram-0.10.3-cp38-cp38-macosx_10_9_x86_64.whl (36.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

hdrhistogram-0.10.3-cp37-cp37m-win_amd64.whl (40.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

hdrhistogram-0.10.3-cp37-cp37m-win32.whl (39.6 kB view details)

Uploaded CPython 3.7m Windows x86

hdrhistogram-0.10.3-cp37-cp37m-musllinux_1_1_x86_64.whl (53.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

hdrhistogram-0.10.3-cp37-cp37m-musllinux_1_1_i686.whl (54.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

hdrhistogram-0.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (48.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

hdrhistogram-0.10.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (49.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hdrhistogram-0.10.3-cp37-cp37m-macosx_10_9_x86_64.whl (36.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

hdrhistogram-0.10.3-cp36-cp36m-win_amd64.whl (40.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

hdrhistogram-0.10.3-cp36-cp36m-win32.whl (39.6 kB view details)

Uploaded CPython 3.6m Windows x86

hdrhistogram-0.10.3-cp36-cp36m-musllinux_1_1_x86_64.whl (52.2 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

hdrhistogram-0.10.3-cp36-cp36m-musllinux_1_1_i686.whl (53.1 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

hdrhistogram-0.10.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (48.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

hdrhistogram-0.10.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (49.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hdrhistogram-0.10.3-cp36-cp36m-macosx_10_9_x86_64.whl (36.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file hdrhistogram-0.10.3.tar.gz.

File metadata

  • Download URL: hdrhistogram-0.10.3.tar.gz
  • Upload date:
  • Size: 60.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for hdrhistogram-0.10.3.tar.gz
Algorithm Hash digest
SHA256 f3890df0a6f3c582a0a8b2a49a568729cb319f1600683e4458cc98b68ca32841
MD5 90605e61e5989d234d28b590fe033c48
BLAKE2b-256 c279674aad5279dd1a77b85efa1cbf8dcead209dc5f38f55cbbfd75bc20cc65b

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f9ed261aa8b5467678356b778eab9f3f12a9003ee4b4b2f53783a343f2c4513c
MD5 ba652a047208667df0eb5cf8e53f42fd
BLAKE2b-256 687f5427a1bd0181226e9f393a3fdbc98ffcbb2216bebf092907217835ec7c7a

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55771195cd438bdc39d4061a27daafb2c2b36d9842f9f54bf3bb1dec8be8c53a
MD5 79a7194097c348e85f3774e8f59edb2e
BLAKE2b-256 c6b5492364b1d227669efda002fe8e6a4214a4f0619be5f87a863354372967d2

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 749676fb15caecfd717fa5a2e9026f27c43ed17a127ed32ae15a2f4f4c5619ee
MD5 97648e3df418b50041cde2f4d5fcbadf
BLAKE2b-256 507ead7b067dd0ee2b970d413af65fd656ca9ae8c3f60ffc14e7286d1aa11afb

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75c725e3d424456114f5661d248d8d36dcd9378ca4ae9df6dd536fc8c7f974a5
MD5 b9a2a48f5518879a9e29fdfd1894059d
BLAKE2b-256 5104e51d89251dd2d760dc388a3f3af01367299225abaf8281c7f65fa456fe2a

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 dc9ff7da871d9149abfa386c44f1d02e83b8b5819ea974f55cf5eed27e9d333a
MD5 1581882db95a66b0c9abbee8ac40384d
BLAKE2b-256 fb46ba6e175ad81e3fa767988dcdb9626e6a5a085756585c9378d70e6effb33c

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c79c269b37132e9ba116c405aa6f331d3bfc7545297609af32f09e94fd6430a
MD5 15785a97f6de0dd6eacfedc6cb7b78e8
BLAKE2b-256 cda08df27859e2f4ca3855546b76aca8e89548fe5e91202e717957d8dbff6be2

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6c1c4b2431a0f539cddf760ac11fb5828faeb0643635548cefea82868f7486eb
MD5 c3c4e3285e97107bf2296ce9a91ca73e
BLAKE2b-256 bee7932268aaa7fc64a5bcb2ab31f8b9d25afcd78ae4662c946b4b586e582e83

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3fe865a17462a756650fe2539702df65b8a10ddcb5e1da4eec64a39c502c2af7
MD5 9b5327ff4e261d85232e29c96953fe1a
BLAKE2b-256 15fcc8c68194d465d15f86ddb8b4a42888531b64ea530f66762645e2b2a685b3

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9f216fe14d696a6d2aad6ead334fd700ce91ab1ddfeb8bbe9f54e784126c1f5d
MD5 34cfee92d3b4a9254ba5f27fb34e4912
BLAKE2b-256 a37a3720c21330733b2a7a8143f1130a69ee73948ae2aed9bef90230eb0de205

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0fbf9db500382a7f19b05708f327b94bea8e17c6a56e7359f9cc532f5afa2662
MD5 20331d80e3038ea8fd91ea7302462647
BLAKE2b-256 4d6a54a16fe53c0ab5640b80474ec86f5587d038d659e1be182f4df55319a376

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fb56df2189655fc6b83275a2f6206842eeef3b45b633947ca8a63ad7866bf0d1
MD5 f6e21b2c37aa5bf4d10d178206f4078b
BLAKE2b-256 761cd57b3a5ab2645b4ecbdf53993d7657773e408031e0218e3a34b1c9fa7a3d

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6fe0c64b902ce8ae94fef5f38710d2b51452521812191668b27b664878defd8
MD5 2a2c4818e67bd5b6d7e5b8cebeec463e
BLAKE2b-256 97bec31b8527cdc01de65a86f006573cd7f247a2cedaa34aabbfc809477f0a9e

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 36e49a657f47cf0c562372ca0e06334461f558ef29ed8a972210f2a879abf669
MD5 2decd23064b3053defe4e3513aede4c0
BLAKE2b-256 cabc47ca1f89cacf95c480081d41da94865984d9c2dfe715f0854317057bca8a

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1ca845e86a296d7efc8a3ff175a0dab614b57adb610b7b1aa4a312becf8319f
MD5 1cc561deac602a4ad78e05b4dca35671
BLAKE2b-256 864c7f62783c192b518d0a72f08dcf63a229adffe0510e7395ffe82d4ec645d0

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9e76612d311ac233f184063fc55ac5097fc6dc1629dc4e25ebe4f18384d6d8ca
MD5 85fa2765557a0ad7831eed05b25efb24
BLAKE2b-256 2b9b313823b1ad29f64bffaf92c1cc5a87e644bc8926b9da617771d91cf19e7b

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce096f9d89dfe4ff9708593e0e5cb9e28c8dd9311c65acb2921530a91e3d043e
MD5 289ca6e76b29518ddbc4489a0bde8aab
BLAKE2b-256 98dd9f47d2c0e09b23ecfd94c7e35b2be978c1f2fb1f14fa74db0b487bf3883a

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 92f0a43d0918ee6c48c78097c6e51eced260d0ae459c00a8a3690fbd9a06dc78
MD5 b81eb07d5ff280ed76c0b0cc42e96405
BLAKE2b-256 b705f0e073f6ddabd71270135be8d1f5e7243e7c030f7468ef832d21c59eac54

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 90bf599703cd146b430fd4c111fb1290da902746ddea9c591c1cfb8313d37974
MD5 d7da0205a40eb944f5a9e45c9d12de71
BLAKE2b-256 bdeca41ade1c98bb4626f0ec95a5c56394b6e84b37e004338bd5b9cc24c61e29

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ad6d3ca8bcec581b8cf936608f79f6dd619e2690d1135c1978d80b01318e19e3
MD5 ace46261d550e3bfaf7f92d37b856088
BLAKE2b-256 a49dc3ba5788f3feed8b2198a8a5461706f174912bb59595af616595a7cefd98

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 57d61fd8378212d3d24149a331f770278766db541373d20a12f9399788ffde82
MD5 ed604bcfa5b5ec4360da162fb5bda610
BLAKE2b-256 54f51367cb6ef66d3d8c5e5091d8738d47a1f42414605b1638dd6785d23b9f99

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2ba2550e8a392a543e727a4875f76f7131d1dd04ebe7c03d3cbe44b83fc130b
MD5 0f3ace88e45af2cc93c8de8cde9d6b0e
BLAKE2b-256 b18aca7b687c70409aec9a524e3ce7c044274f5108fd9c33cc93635237279b70

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bda8ae7ab424e6f2221ae9daed20610becb5d59cae2d448a05077b00e864c9e7
MD5 ae81db0d7a8fe0b025b5260dac5f347a
BLAKE2b-256 d02010edd9915fcad1bd87c062c5c049a536d9783ebadd4e7f606414bdb74ce5

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 088d3ef64c2004fc3cd4b21c4292efe4648367a1ce98c554bf7c5730a0ba018e
MD5 0c5e383ddc70cd566bca42392593fd69
BLAKE2b-256 05604d12ce18d95c815553751ace3936bccc54d67f47c7a2ebcd94c7fc89ca7f

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e07dc9d667c71b061cc56a721f0005d8d77cf1a7f383902657703ac3ecd026f6
MD5 04d0336b39b4d3f95302d88424b4c1cf
BLAKE2b-256 d15472918ace22fbb247eae9cd61648c1a4142539e216764327721deb281d0de

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 28950b3ffaa97e859f76a08932a6c2a5baeca2a140804e0fd03b3b1d622a6c92
MD5 dfb4b9b6e14e4a8fca998d254dda590a
BLAKE2b-256 46d97e9b72f217014fe9863b84b326af6d8ef4e559493f93ca10d81e53cbf2e2

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bfd6ad77c1f7806aaeb6b340866a6bb38a1f0fe94d8f5a5f74372c33a094913f
MD5 8f0d24f2d8f41d0a81f4b5476cfc0a50
BLAKE2b-256 d699a26df64d5069984e38305a6d6462534722f09c7f7578e5303903192f7a6a

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d814811d52e699426a8b54f2448ab5e49fee3519a200cd887fd3faaaa6f4a35d
MD5 d3596b39b0c8f3a41e613b6ae079e5b2
BLAKE2b-256 931420cb3a638284a5903492eecb5b5d1303aa1ec9606b9e2296ca1753df1f0c

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f55fcbd39953b8989344cfb56cfa06094dbffc3fd4df1ff05d4b15658e1bf6d
MD5 9b9466335916cb71f3f2315806899f1a
BLAKE2b-256 a9228f1f52f3fa3291d7c1693d9266d31753be5f27b907c97ce4db495de169fa

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f6d7e402365ced65309c3ffb060b6bcf7d1265bfba293509076f18b5d9ec260d
MD5 eb3b5d06eeba371e64b5a537c5f1deaf
BLAKE2b-256 a8ba37b9144c0372b1f48b9310a8e4fc77a4d4f8949190b0e56ebc2dd17c9e54

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d5748a22ec68a5390f9d493aca933a6871788e34df91da4cc0a6ee19e336dc6d
MD5 d0eec4cd2b84b151023ad7d4a49163f4
BLAKE2b-256 5458bdd5df067445478013f7a21b378181b206cc0aaf31024366ac813e0d9a96

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bbe025f00445c842440c5c1cf3b7665a1a37e7d954142bcbf0838a7bb307b9ef
MD5 dd54e678dd640d3a33c8e2a4abf50b44
BLAKE2b-256 33a08b92bcf409e4904c6e9b7fe4be5649688250087a5a9642f8a74b0992e274

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 19c5fff0cdf22a12fe68d3e09f928c0fc7873adb235f98a214222fb7b2249a3e
MD5 6b481efda785274306ceb3e8870db692
BLAKE2b-256 fb75c10f54832caef244dff1bb12b30b535707ab8ef90962e202375eb499b2fa

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 38f1b5c45e71e2a3b982fb1b25c17ad9eaed2f0b014ea6637373630b18644945
MD5 c2ee74ae025c6e4a7d7b200f1c6162ec
BLAKE2b-256 83fef1993d6348b19ea196ec44460c09368f0a073d5ea74af9d95753b533bbcd

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b58256f9f8a47aee37b1fec6a3f069212b6174162f7cd814e1dcd3afbef389b2
MD5 76121d11c383c935e3b6ded3956c1181
BLAKE2b-256 d157db938fefb817848c33b0ec89821973fcf5c12593ea793e4a8fc9fdd8b512

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b12d915dab421f269a50e3831510f11fece8268c4a4543b5a2dca21fcdfb6aa
MD5 3fde9fd8a8d4575bb8551e9f56772e50
BLAKE2b-256 dfabeea37d70ab77c8b966be7243fd1b97c44c4b1fc44e7045fbea078df86087

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a52d892b093e7906c91d577dafe75c2d8864a8e113e98d6f88848f9ce40a952f
MD5 7060c799c5a4be9a567048352cddbca3
BLAKE2b-256 0fb04d6cbf8d6329eb95eb29360588957862581bd0637e1e9aa62e7cb830e4af

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ca99b4ea5c4a94fff9ed9e76fe308273376f630c461379671fcbdd2c9934b0b
MD5 6553675be0d19c616af8e240c6de61b7
BLAKE2b-256 ce5635dc91e2280df0896aed090f65223d6423378995f127f5b75e72548c9ae8

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c5adccd90121badb70d1cf4f0f3618b21b86c240c30d8428228187af30e148ed
MD5 0d2dc5a177328b0db5bcaeb5aedef605
BLAKE2b-256 05bc4d5672214517b30c6f9274605030d998f10f638bc5204a91e45f73818f67

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: hdrhistogram-0.10.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 39.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for hdrhistogram-0.10.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0f0ecd6a4efcd4b86d460ac21e1a51702135e1378dac168b92521d780e725b90
MD5 f95dab9796abc1fc4be6b9da6f118aad
BLAKE2b-256 9f9298730e6b89ccc56ff7d55446e0acb3efd82e0ce30bed17b22fe28f8eee3f

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 51f90e682236532c96705e8b05ca9136911c1aa0a460e908738d7b618077cace
MD5 322914e483fdfea3a1cc8429f90a7f2f
BLAKE2b-256 118de57afa4ded8185b48b1fa29165e3ca6ef46c29b181afc5c3617c4353c2ef

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9e0765858fbd12ea25d1fd9081ff4524b25aa47fd6652d3413343e8a0e930ade
MD5 748dbc8fd4dfabaffe777226602d83a8
BLAKE2b-256 81bc15cab8d6eef9558cbe2daf86b3e0cd34d85ced094e9d89a93a474205248e

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93c77a6366a3fea2dc6fc5a8f13c8d2ccbcc4fb34c2f033a2ed574fc5ca07ad5
MD5 d02244a2d47ed7fe156612a24a0cddc0
BLAKE2b-256 98171cde11872d27dfe014b115bb5076a711cc040bef2b2e457da968bee988f1

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a9bd5b71e013408068c3ed6151a81d2e9792edff37b3b66d0c30dd7f287a99d2
MD5 b86a9a5c5cde6bdb67ee9660be860ca5
BLAKE2b-256 85724f214c60c968ef2e2802b50062a22eb89eef9fcc3e38cb362c69440c7d55

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 35960a123b9eb175c52f009da4295624b3e195ecc8ea5e8e49fdb58016d4b4ce
MD5 60c0de807d34e7852b8809d3ad12a6c0
BLAKE2b-256 ca8a88930e2aa33638a906dbe630c937fe3103156a8b03dfcedf40fedce632be

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 56083c578657427693e4ea25770925a79e9c961198776f8205d9155d2096a710
MD5 3fcc3f19c587baaf9378db13e35daa9d
BLAKE2b-256 be0adc1dabd2819213e362a20b5794c18629c20b2682a61800142bdd27fdd5c9

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: hdrhistogram-0.10.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 39.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for hdrhistogram-0.10.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 20699699638297097104e02c55b1d83c02d123dda98ee25af41d56d6131b4daa
MD5 cda15d2f8f01b70bbaa671a1a7ddf970
BLAKE2b-256 6e285e9b23b88a0ddb958b290844a38076f020d61a41f60286e959b6d117cc7f

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ba7b1008820e6a705fec9169db99ff45b8e903fe1d15ae8f11d98cb25a327673
MD5 d33c3284ea869dfa8f2f650881225a8a
BLAKE2b-256 d35f37c68db34a2492091add31e38919517eb65ca1b7f99c2a8cd5f901283da7

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ee8db21d1b3a5bb561afb49ed5eded873629a1a77542eb06237af13f7d3dae97
MD5 503ed59738c62a07788b4631d1ef590e
BLAKE2b-256 3ea0fb4c57a5622e53e9f71053f869bfe5813cfa1a7368d09673aff35238b91c

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80be7a23c410e1a3c5f81ddfee4eec57788b8de8e0175e9043181dd839937c3e
MD5 25bb9db6d605dd33afa26957ea8c5f7c
BLAKE2b-256 d8d92786ad03304aa3bb8999266040b4f7de4315ce4e91e0127d64f73767849c

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bdb7700f0f409056cf8147d80862fef7a1c6a2a6a410c31370ce6470600e239f
MD5 6c6769289b0aadf4df6b1cef46e00b2a
BLAKE2b-256 4f6de86e5864805e7a48efb5e13391292d5b802643072ae1d7a8f292d970ebc4

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e358a2112f9b687f8665dd0eab45eb61e2c21e607e6a13ba3831b019931720b3
MD5 b7f0dc04af4d87cb86965f78a237c4d1
BLAKE2b-256 7c81d25e9d08f907e63789bed94129f027e2b4ef91bb59c42d16be98630dc66a

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 24f6a42d31ece8beaf75d53480be6c6a0ce27e98440f3de1605229b360ef30b9
MD5 e8f226ced17378c2fc51618b7e508641
BLAKE2b-256 cadb670c18eff5629bb6892280abcac2b8e3199b3fdefb71d024b685417befed

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 be1cc268d6cfcd7193d87310deb2b4bbf56f58dc5a84382c73c02f4058c0a743
MD5 c3500196f0b0ac41925f7c99c7db8cae
BLAKE2b-256 592e8f1a7c69bed869417f193c2aaae6cb41d4dd79fb52f8e4c59fb66c7ded12

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 63739f63aa5e8fb57df66f020e438d52baa80af42809672a8cb5d655f489afc8
MD5 419bf7b528c6feeec6167f73f1fe50cf
BLAKE2b-256 3956221f014898b577a051841b7882ac1bcdfc4aaf1e15441048c9568b5ffbdd

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3ae3e69a5570812d76ddf647c75a61a321e351819768d8bdd36538ae912eafc1
MD5 e188bd90d54dbd3d5dd8146c0d5b0d24
BLAKE2b-256 4d3126798ea464f92eef1cb7c999d0d11b3b74d25d58572dc51497b0220d7e03

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f451c9d883abfdf73058b0863d43e4ee577504bd27bd46d257e354a3f21f22c
MD5 ed3185a19d58930f7912bb322dd4b695
BLAKE2b-256 d0b8eb58bf9364380c7f36bf4f4a9c311926643206afb78fd091f880a6192aff

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eedbb4940596404097057382a110160a0a861e926c11d22db2479ab1fdcacd26
MD5 15aa9f9f2d5eabfdf2635ba0c679a2ce
BLAKE2b-256 4f3b27fa995a336abb1d1ef81bf64bc6ec488edc0da00310d7d0f7cee20c70ed

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6714255d09e8618c5f335ea91fd945e4fcd7f165ac3e71a01354d0225e2cd8d
MD5 dc33c9538dab1eff6294a2a8ade7345e
BLAKE2b-256 5e40497143a096fe25ca4237ae14472de180104b7a1bd4c84b63f42b906c4bcc

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1c93c0a00e824e298671f8942e2ffe8cd9a7083800594bebab2110ea948eb640
MD5 3c0253708c38ef548ce3d99a041f98cb
BLAKE2b-256 8349acf941b1a6d0800881e758a98558e1c1c974e1f242fba944bb604a0b3a0d

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 1f0ebec7b1aa970b4580623444711fa76f7c9f3ed2b702807a1dcbb513d8f50f
MD5 20fb9231864b33cf945359ebeba392e7
BLAKE2b-256 0bce1ca436fb0ee6777f4677a68cc43e3d24e043dc163a12e0fb143cb00e96fd

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 da0b21803a80fbc395823b873825d188a587fb831ac32733f5bb1d1a67fca134
MD5 4b4afdb15d0f79b31f88d881bbc7fe32
BLAKE2b-256 6da4a344ab2955dd558f534bbb146f4a6efd3cdd948bcd4e5345d0a63abdd5f0

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f8d9d56aedd87aa2347188f5a3b24aaafeee154a92b1741e97a18f2135a18f5a
MD5 c757c751327f2c95ca10923b37d3b33d
BLAKE2b-256 b16b2f37147985c96b08461dab633231c11ade6708dcba825ff78e353cd8879a

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 058bcdd518d16d3ccb15d67e5f3dd6a3c9ab79970f474ecd5fa60d4dfa482e53
MD5 e29217d5027a049ee61043683053614e
BLAKE2b-256 61b541c708faec570692ed40d7dbb2f6192841bc074373dd07d853c18b573f9a

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 93eb769a67b27017926208a63914126cef684284a51a8c30126e83bf4cbc273c
MD5 8d8999b40adc11095004ac6e914cc3b6
BLAKE2b-256 bf6e9c529560d92abbb4b4a55d337f566ccc9d63554f19f3a01d4f244f2ee16b

See more details on using hashes here.

File details

Details for the file hdrhistogram-0.10.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for hdrhistogram-0.10.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eb9a45365b4a52f16b1e53a3f431ee9ef65a978b5a62ede2be6e2654f43f338b
MD5 58de372a3cb8d1164b0bbc85e076063b
BLAKE2b-256 73ff61625b9097e093662a53c945f7eba33b72bb0b399f742953d9c5fb4b1793

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page