Skip to main content

statistics tools and utilities

Project description

Scikit-HEP project hepstats package: statistics tools and utilities

Scikit-HEP

PyPI PyPI - Python Version DOI CI codecov Binder Code style: black

Installation

Install hepstats like any other Python package:

pip install hepstats

or similar (use e.g. virtualenv if you wish).

Changelog

See the changelog for a history of notable changes.

Getting Started

The hepstats module includes modeling, hypotests and splot submodules. This a quick user guide to each submodule. The binder examples are also a good way to get started.

modeling

The modeling submodule includes the Bayesian Block algorithm that can be used to improve the binning of histograms. The visual improvement can be dramatic, and more importantly, this algorithm produces histograms that accurately represent the underlying distribution while being robust to statistical fluctuations. Here is a small example of the algorithm applied on Laplacian sampled data, compared to a histogram of this sample with a fine binning.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from hepstats.modeling import bayesian_blocks

>>> data = np.random.laplace(size=10000)
>>> blocks = bayesian_blocks(data)

>>> plt.hist(data, bins=1000, label='Fine Binning', density=True, alpha=0.6)
>>> plt.hist(data, bins=blocks, label='Bayesian Blocks', histtype='step', density=True, linewidth=2)
>>> plt.legend(loc=2)

bayesian blocks example

hypotests

This submodule provides tools to do hypothesis tests such as discovery test and computations of upper limits or confidence intervals. hepstats needs a fitting backend to perform computations such as zfit. Any fitting library can be used if their API is compatible with hepstats (see api checks).

We give here a simple example of an upper limit calculation of the yield of a Gaussian signal with known mean and sigma over an exponential background. The fitting backend used is the zfit package.

>>> import zfit
>>> from zfit.loss import ExtendedUnbinnedNLL
>>> from zfit.minimize import Minuit

>>> bounds = (0.1, 3.0)
>>> obs = zfit.Space('x', limits=bounds)

>>> bkg = np.random.exponential(0.5, 300)
>>> peak = np.random.normal(1.2, 0.1, 10)
>>> data = np.concatenate((bkg, peak))
>>> data = data[(data > bounds[0]) & (data < bounds[1])]
>>> N = data.size
>>> data = zfit.Data.from_numpy(obs=obs, array=data)

>>> lambda_ = zfit.Parameter("lambda", -2.0, -4.0, -1.0)
>>> Nsig = zfit.Parameter("Nsig", 1., -20., N)
>>> Nbkg = zfit.Parameter("Nbkg", N, 0., N*1.1)
>>> signal = zfit.pdf.Gauss(obs=obs, mu=1.2, sigma=0.1).create_sampler(Nsig)
>>> background = zfit.pdf.Exponential(obs=obs, lambda_=lambda_).create_sampler(Nbkg)
>>> total = zfit.pdf.SumPDF([signal, background])
>>> loss = ExtendedUnbinnedNLL(model=total, data=data)

>>> from hepstats.hypotests.calculators import AsymptoticCalculator
>>> from hepstats.hypotests import UpperLimit
>>> from hepstats.hypotests.parameters import POI, POIarray

>>> calculator = AsymptoticCalculator(loss, Minuit(), asimov_bins=100)
>>> poinull = POIarray(Nsig, np.linspace(0.0, 25, 20))
>>> poialt = POI(Nsig, 0)
>>> ul = UpperLimit(calculator, poinull, poialt)
>>> ul.upperlimit(alpha=0.05, CLs=True)

Observed upper limit: Nsig = 15.725784747406346
Expected upper limit: Nsig = 11.927442041887158
Expected upper limit +1 sigma: Nsig = 16.596396280677116
Expected upper limit -1 sigma: Nsig = 8.592750403611896
Expected upper limit +2 sigma: Nsig = 22.24864429383046
Expected upper limit -2 sigma: Nsig = 6.400549971360598

upper limit example

splots

A full example using the sPlot algorithm can be found here. sWeights for different components in a data sample, modeled with a sum of extended probability density functions, are derived using the compute_sweights function:

>>> from hepstats.splot import compute_sweights

# using same model as above for illustration
>>> sweights = compute_sweights(signal + background, data)

>>> bkg_sweights = sweights[Nbkg]
>>> sig_sweights = sweights[Nsig]

The model needs to be fitted to the data for the computation of the sWeights, if not an error is raised.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hepstats-0.2.5.tar.gz (7.3 MB view details)

Uploaded Source

Built Distribution

hepstats-0.2.5-py2.py3-none-any.whl (38.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file hepstats-0.2.5.tar.gz.

File metadata

  • Download URL: hepstats-0.2.5.tar.gz
  • Upload date:
  • Size: 7.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for hepstats-0.2.5.tar.gz
Algorithm Hash digest
SHA256 bfdd5ee9b5eea04ebb2705cda922bb619d14703326d6fb7ab51db28c71a1dfc7
MD5 9a77af567f38c2c19b5cc9a33609801f
BLAKE2b-256 4b5765246e0b8ae90828afaa005b4a147ade9b3cd0d8329f6d609d72c0cf403e

See more details on using hashes here.

File details

Details for the file hepstats-0.2.5-py2.py3-none-any.whl.

File metadata

  • Download URL: hepstats-0.2.5-py2.py3-none-any.whl
  • Upload date:
  • Size: 38.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for hepstats-0.2.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c79dc51b4f33c71d03830a87acc7bed42b44bb126eb5d0d01bf04aebc12a90a6
MD5 4a4f90651ea4872d6ca1db79e4d11fa6
BLAKE2b-256 43daabf0311cec4d05d53e4d22373bf25df3f90846b6f577e1e6bc3a5ec78e8c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page