Skip to main content

Units and constants in the HEP system of units

Project description

Scikit-HEP project package PyPI conda-forge Actions Status Code style: black

hepunits collects the most commonly used units and constants in the HEP System of Units, as derived from the basic units originally defined by the CLHEP project, which are not the same as the SI system of units:

Quantity

Name

Unit

Length

millimeter

mm

Time

nanosecond

ns

Energy

Mega electron Volt

MeV

Positron charge

eplus

Temperature

kelvin

K

Amount of substance

mole

mol

Luminous intensity

candela

cd

Plane angle

radian

rad

Solid angle

steradian

sr

It is largely based on the international system of units (SI)

Quantity

Name

Unit

Length

meter

m

Time

second

s

Mass

kilogram

kg

Electric current

ampere

A

Temperature

kelvin

K

Amount of substance

mole

mol

Luminous intensity

candela

cd

but augments it with handy definitions, changing the basic length and time units.

This HEP system of units is in use in many software libraries such as GEANT4 and Gaudi.

Note that many units are now exact, such as the speed of light in vacuum. The package is in agreement with the values in the 2020 Particle Data Group review.

Installation

Install hepunits like any other Python package, typically:

python -m pip install hepunits

The package is also available on conda-forge, and installable with

conda install -c conda-forge hepunits

Getting started

The package contains 2 modules, constants and units, whose names are self-explanatory. It may be more readable to import quantities explicitly from each of the modules though everything is available from the top-level as from hepunits import ....

The module hepunits.constants contains 2 sorts of constants: physical constants and commonly used constants.

The typical usage is the following:

>>> from hepunits.constants import c_light
>>> from hepunits.units     import picosecond, micrometer
>>> tau_Bs = 1.5 * picosecond    # a particle lifetime, say the Bs meson's
>>> ctau_Bs = c_light * tau_Bs   # ctau of the particle, ~450 microns
>>> print ctau_Bs                # result in HEP units, so mm
0.449688687
>>> print ctau_Bs / micrometer   # result in micrometers
449.688687

Typical usage of the hepunits.units module:

>>> # add two quantities with length units and get the result in meters
>>> from hepunits import units as u
>>> (1 * u.meter + 5 * u.cm) / u.meter
1.05
>>> # the default result is, of course, in HEP units, so mm
>>> 1 * u.meter + 5 * u.cm
1050.0

Fancier usage

When working with data the user should not need to know what units are used in their internal representation (it makes sense, and is important, to be consistent throughout the “data storages”). These simple rules are enough - exemplified in the code below:

  • Dimensioned quantities in the “data stores” abide to the HEP system of units.

  • All definitions of dimensioned quantities are dimensioned by multiplying by the units, as in mass_window = 500 * keV.

  • All output of dimensioned quantities is converted to the required units by dividing by the units, as in energy_resolution() / GeV.

For the sake of argument, let’s consider below a function returning a dimensioned quantity. the function below stores a dimensioned quantity defined in keV (the actual value is represented in MeV, which is the standard unit) and the caller simply needs to ensure an explicit conversion to the desired unit dividing by it (GeV in the example):

>>> from hepunits.units import keV, MeV, GeV
>>> mass_window = 1 * GeV    # define a 1 GeV mass window
>>> def energy_resolution():
...    # returns the energy resolution of 100 keV
...    return 500. * keV
...
>>> energy_resolution() / GeV # get the energy resolution in GeV
0.0005

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hepunits-2.1.1.tar.gz (14.6 kB view details)

Uploaded Source

Built Distribution

hepunits-2.1.1-py2.py3-none-any.whl (10.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file hepunits-2.1.1.tar.gz.

File metadata

  • Download URL: hepunits-2.1.1.tar.gz
  • Upload date:
  • Size: 14.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for hepunits-2.1.1.tar.gz
Algorithm Hash digest
SHA256 21b18bbf82ade5e429e2c71ec41bc5ae8005b275466bdaef0159ddc4f8085b31
MD5 10a4e620b3e29070ae751c3b788fab80
BLAKE2b-256 d9aabee3174606f54bd1a677b68ed5af2ca5a89b7d41044d185b32c6e15702be

See more details on using hashes here.

File details

Details for the file hepunits-2.1.1-py2.py3-none-any.whl.

File metadata

  • Download URL: hepunits-2.1.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 10.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for hepunits-2.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b3d69929003595a179e8496137082f63661a40deb718910b8317e1e59f101198
MD5 b869fe33ed451bf8037d9ab8f59dc3a6
BLAKE2b-256 3f40080cf95a028a6010a8ca0143fad67f6a0316d7eca0151cc274cbbe59817e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page