Skip to main content

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make Argo Workflows more accessible by abstracting away some setup that is typically necessary for constructing Argo workflows.

Project description

Hera (hera-workflows)

The Argo was constructed by the shipwright Argus,
and its crew were specially protected by the goddess Hera.

(https://en.wikipedia.org/wiki/Argo)

Open in Gitpod

Build Docs codecov License: MIT

Pypi CondaForge Versions

Downloads Downloads/month Downloads/week

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make the Argo ecosystem accessible by simplifying workflow construction and submission.

You can watch the introductory Hera presentation at the "Argo Workflows and Events Community Meeting 20 Oct 2021" here!

Table of content

Requirements

Hera requires an Argo server to be deployed to a Kubernetes cluster. Currently, Hera assumes that the Argo server sits behind an authentication layer that can authenticate workflow submission requests by using the Bearer token on the request. To learn how to deploy Argo to your own Kubernetes cluster you can follow the Argo Workflows guide!

Another option for workflow submission without the authentication layer is using port forwarding to your Argo server deployment and submitting workflows to localhost:2746 (2746 is the default, but you are free to use yours). Please refer to the documentation of Argo Workflows to see the command for port forward!

Note Since the deprecation of tokens being automatically created for ServiceAccounts and Argo using Bearer tokens in place, it is necessary to use --auth=server and/or --auth=client when setting up Argo Workflows on Kubernetes v1.24+ in order for hera-workflows to communicate to the Argo Server.

Installation

Source Command
PyPi pip install hera-workflows
Conda conda install -c conda-forge hera-workflows
GitHub repo python -m pip install git+https://github.com/argoproj-labs/hera-workflows --ignore-installed/pip install .

Examples

from hera import Task, Workflow


def say(message: str):
    print(message)


with Workflow("diamond") as w:
    a = Task('a', say, ['This is task A!'])
    b = Task('b', say, ['This is task B!'])
    c = Task('c', say, ['This is task C!'])
    d = Task('d', say, ['This is task D!'])

    a >> [b, c] >> d

w.create()

See the examples directory for a collection of Argo workflow construction and submission via Hera!

Contributing

If you plan to submit contributions to Hera you can install Hera in a virtual environment managed by poetry:

poetry install

In your activated poetry shell, you can utilize the tasks found in tox.ini, e.g.:

To run tests on all supported python versions with coverage run tox:

tox

To list all available tox envs run:

tox -a

To run selected tox envs, e.g. for a specific python version with coverage run:

tox -e py37,coverage

As coverage depends on py37, it will run after py37

See project tox.ini for more details

Also, see the contributing guide!

Comparison

There are other libraries currently available for structuring and submitting Argo Workflows:

  • Couler, which aims to provide a unified interface for constructing and managing workflows on different workflow engines;
  • Argo Python DSL, which allows you to programmaticaly define Argo worfklows using Python.

While the aforementioned libraries provide amazing functionality for Argo workflow construction and submission, they require an advanced understanding of Argo concepts. When Dyno Therapeutics started using Argo Workflows, it was challenging to construct and submit experimental machine learning workflows. Scientists and engineers at Dyno Therapeutics used a lot of time for workflow definition rather than the implementation of the atomic unit of execution - the Python function - that performed, for instance, model training.

Hera presents a much simpler interface for task and workflow construction, empowering users to focus on their own executable payloads rather than workflow setup. Here's a side by side comparison of Hera, Argo Python DSL, and Couler:

HeraCoulerArgo Python DSL

from hera import Task, Workflow


def say(message: str):
    print(message)


with Workflow("diamond") as w:
    a = Task('a', say, ['This is task A!'])
    b = Task('b', say, ['This is task B!'])
    c = Task('c', say, ['This is task C!'])
    d = Task('d', say, ['This is task D!'])

    a >> [b, c] >> d

w.create()

import couler.argo as couler
from couler.argo_submitter import ArgoSubmitter


def job(name):
    couler.run_container(
        image="docker/whalesay:latest",
        command=["cowsay"],
        args=[name],
        step_name=name,
    )


def diamond():
    couler.dag(
        [
            [lambda: job(name="A")],
            [lambda: job(name="A"), lambda: job(name="B")],  # A -> B
            [lambda: job(name="A"), lambda: job(name="C")],  # A -> C
            [lambda: job(name="B"), lambda: job(name="D")],  # B -> D
            [lambda: job(name="C"), lambda: job(name="D")],  # C -> D
        ]
    )


diamond()
submitter = ArgoSubmitter()
couler.run(submitter=submitter)

from argo.workflows.dsl import Workflow

from argo.workflows.dsl.tasks import *
from argo.workflows.dsl.templates import *


class DagDiamond(Workflow):

    @task
    @parameter(name="message", value="A")
    def A(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="B")
    @dependencies(["A"])
    def B(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="C")
    @dependencies(["A"])
    def C(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="D")
    @dependencies(["B", "C"])
    def D(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @template
    @inputs.parameter(name="message")
    def echo(self, message: V1alpha1Parameter) -> V1Container:
        container = V1Container(
            image="alpine:3.7",
            name="echo",
            command=["echo", "{{inputs.parameters.message}}"],
        )

        return container

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hera_workflows-4.4.1.tar.gz (63.6 kB view details)

Uploaded Source

Built Distribution

hera_workflows-4.4.1-py3-none-any.whl (75.9 kB view details)

Uploaded Python 3

File details

Details for the file hera_workflows-4.4.1.tar.gz.

File metadata

  • Download URL: hera_workflows-4.4.1.tar.gz
  • Upload date:
  • Size: 63.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for hera_workflows-4.4.1.tar.gz
Algorithm Hash digest
SHA256 98f67b4d577a6b6e7de68e19983dcce19e312809fd12ed8c9b58835c08c6cbaf
MD5 2129262008f517756f60ad8f235b7535
BLAKE2b-256 e2010d0f1102e28a47d8f81001083f3325953ecbfdea256ed4ce0820337ce373

See more details on using hashes here.

File details

Details for the file hera_workflows-4.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for hera_workflows-4.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d24e7b6ab0fa1c5baf380f6a7e0be90db014ef5e38810024e4dab2b6fe6ae816
MD5 ace9b760116a63e3f9aeadeff35a2e26
BLAKE2b-256 df92e4053fbebb4ef5d554b1640a26310a5ee9bc529d9b78664d585a255199ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page