Skip to main content

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make Argo Workflows more accessible by abstracting away some setup that is typically necessary for constructing Argo workflows.

Project description

Hera (hera-workflows)

The Argo was constructed by the shipwright Argus,
and its crew were specially protected by the goddess Hera.

(https://en.wikipedia.org/wiki/Argo)

Open in Gitpod

Build Docs codecov License: MIT

Pypi CondaForge Versions

Downloads Downloads/month Downloads/week

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make the Argo ecosystem accessible by simplifying workflow construction and submission.

You can watch the introductory Hera presentation at the "Argo Workflows and Events Community Meeting 20 Oct 2021" here!

Table of content

Requirements

Hera requires an Argo server to be deployed to a Kubernetes cluster. Currently, Hera assumes that the Argo server sits behind an authentication layer that can authenticate workflow submission requests by using the Bearer token on the request. To learn how to deploy Argo to your own Kubernetes cluster you can follow the Argo Workflows guide!

Another option for workflow submission without the authentication layer is using port forwarding to your Argo server deployment and submitting workflows to localhost:2746 (2746 is the default, but you are free to use yours). Please refer to the documentation of Argo Workflows to see the command for port forward!

Note Since the deprecation of tokens being automatically created for ServiceAccounts and Argo using Bearer tokens in place, it is necessary to use --auth=server and/or --auth=client when setting up Argo Workflows on Kubernetes v1.24+ in order for hera-workflows to communicate to the Argo Server.

Installation

Source Command
PyPi pip install hera-workflows
Conda conda install -c conda-forge hera-workflows
GitHub repo python -m pip install git+https://github.com/argoproj-labs/hera-workflows --ignore-installed/pip install .

Examples

from hera import Task, Workflow


def say(message: str):
    print(message)


with Workflow("diamond") as w:
    a = Task('a', say, ['This is task A!'])
    b = Task('b', say, ['This is task B!'])
    c = Task('c', say, ['This is task C!'])
    d = Task('d', say, ['This is task D!'])

    a >> [b, c] >> d

w.create()

See the examples directory for a collection of Argo workflow construction and submission via Hera!

Contributing

If you plan to submit contributions to Hera you can install Hera in a virtual environment managed by poetry:

poetry install

Once the dependencies are installed, you can use the various make targets to replicate the CI jobs.

make help
check-codegen                  Check if the code is up to date
ci                             Run all the CI checks
codegen                        Generate all the code
events-models                  Generate the Events models portion of Argo Workflows
events-service                 Generate the events service option of Hera
examples                       Generate all the examples
format                         Format and sort imports for source, tests, examples, etc.
help                           Showcase the help instructions for all the available `make` commands
lint                           Run a `lint` process on Hera and report problems
models                         Generate all the Argo Workflows models
services                       Generate the services of Hera
test                           Run tests for Hera
workflows-models               Generate the Workflows models portion of Argo Workflows
workflows-service              Generate the Workflows service option of Hera

Also, see the contributing guide!

Comparison

There are other libraries currently available for structuring and submitting Argo Workflows:

  • Couler, which aims to provide a unified interface for constructing and managing workflows on different workflow engines;
  • Argo Python DSL, which allows you to programmaticaly define Argo worfklows using Python.

While the aforementioned libraries provide amazing functionality for Argo workflow construction and submission, they require an advanced understanding of Argo concepts. When Dyno Therapeutics started using Argo Workflows, it was challenging to construct and submit experimental machine learning workflows. Scientists and engineers at Dyno Therapeutics used a lot of time for workflow definition rather than the implementation of the atomic unit of execution - the Python function - that performed, for instance, model training.

Hera presents a much simpler interface for task and workflow construction, empowering users to focus on their own executable payloads rather than workflow setup. Here's a side by side comparison of Hera, Argo Python DSL, and Couler:

HeraCoulerArgo Python DSL

from hera import Task, Workflow


def say(message: str):
    print(message)


with Workflow("diamond") as w:
    a = Task('a', say, ['This is task A!'])
    b = Task('b', say, ['This is task B!'])
    c = Task('c', say, ['This is task C!'])
    d = Task('d', say, ['This is task D!'])

    a >> [b, c] >> d

w.create()

import couler.argo as couler
from couler.argo_submitter import ArgoSubmitter


def job(name):
    couler.run_container(
        image="docker/whalesay:latest",
        command=["cowsay"],
        args=[name],
        step_name=name,
    )


def diamond():
    couler.dag(
        [
            [lambda: job(name="A")],
            [lambda: job(name="A"), lambda: job(name="B")],  # A -> B
            [lambda: job(name="A"), lambda: job(name="C")],  # A -> C
            [lambda: job(name="B"), lambda: job(name="D")],  # B -> D
            [lambda: job(name="C"), lambda: job(name="D")],  # C -> D
        ]
    )


diamond()
submitter = ArgoSubmitter()
couler.run(submitter=submitter)

from argo.workflows.dsl import Workflow

from argo.workflows.dsl.tasks import *
from argo.workflows.dsl.templates import *


class DagDiamond(Workflow):

    @task
    @parameter(name="message", value="A")
    def A(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="B")
    @dependencies(["A"])
    def B(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="C")
    @dependencies(["A"])
    def C(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="D")
    @dependencies(["B", "C"])
    def D(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @template
    @inputs.parameter(name="message")
    def echo(self, message: V1alpha1Parameter) -> V1Container:
        container = V1Container(
            image="alpine:3.7",
            name="echo",
            command=["echo", "{{inputs.parameters.message}}"],
        )

        return container

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hera_workflows-5.0.0rc1.tar.gz (198.7 kB view details)

Uploaded Source

Built Distribution

hera_workflows-5.0.0rc1-py3-none-any.whl (226.4 kB view details)

Uploaded Python 3

File details

Details for the file hera_workflows-5.0.0rc1.tar.gz.

File metadata

  • Download URL: hera_workflows-5.0.0rc1.tar.gz
  • Upload date:
  • Size: 198.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for hera_workflows-5.0.0rc1.tar.gz
Algorithm Hash digest
SHA256 a5ecefc8036deea250dfa5775a98175f27b6815d7bc7005a108538361caf74ba
MD5 bc12d9eb24d332b52f7b0f9cf187f077
BLAKE2b-256 91d527d68a9b4685bcee6119ecb91cc67f461e353fa26cc4e59fa04e32cf1825

See more details on using hashes here.

File details

Details for the file hera_workflows-5.0.0rc1-py3-none-any.whl.

File metadata

File hashes

Hashes for hera_workflows-5.0.0rc1-py3-none-any.whl
Algorithm Hash digest
SHA256 a64d4e16e65d82b6da04e887f9c6255da5aeee2d9b4661858f0d8157aa494e7c
MD5 291aab1e445e6bbfec34c3c783ec7e5a
BLAKE2b-256 9508bc44958b6c1ede0b54a971bbe8ff1a8aba3e12a10a4df221cadcb7fdfc45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page