Skip to main content

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make Argo Workflows more accessible by abstracting away some setup that is typically necessary for constructing Argo workflows.

Project description

Hera

The Argo was constructed by the shipwright Argus,
and its crew were specially protected by the goddess Hera.

Open in Gitpod

Build Docs codecov License: MIT

Pypi CondaForge Versions

Stats after the rename to Hera

Downloads Downloads/month Downloads/week

Stats before the rename to Hera

Downloads Downloads/month Downloads/week

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make the Argo ecosystem accessible by simplifying workflow construction and submission.

You can watch the introductory Hera presentation at the "Argo Workflows and Events Community Meeting 20 Oct 2021" here!

Table of content

Requirements

Hera requires an Argo server to be deployed to a Kubernetes cluster. Currently, Hera assumes that the Argo server sits behind an authentication layer that can authenticate workflow submission requests by using the Bearer token on the request. To learn how to deploy Argo to your own Kubernetes cluster you can follow the Argo Workflows guide!

Another option for workflow submission without the authentication layer is using port forwarding to your Argo server deployment and submitting workflows to localhost:2746 (2746 is the default, but you are free to use yours). Please refer to the documentation of Argo Workflows to see the command for port forward!

Note Since the deprecation of tokens being automatically created for ServiceAccounts and Argo using Bearer tokens in place, it is necessary to use --auth=server and/or --auth=client when setting up Argo Workflows on Kubernetes v1.24+ in order for hera to communicate to the Argo Server.

Installation

Note

Hera went through a name change - from hera-workflows to hera. This is reflected in the published Python package. If you'd like to install versions prior to 5.0.0, you have to use hera-workflows. Hera currently publishes releases to both hera and hera-workflows for backwards compatibility purposes.

Source Command
PyPi pip install hera
PyPi pip install hera-workflows
Conda conda install -c conda-forge hera-workflows
GitHub repo python -m pip install git+https://github.com/argoproj-labs/hera --ignore-installed/pip install .

Optional dependencies

yaml

  • Install via hera[yaml]
  • PyYAML is required for the yaml output format, which is accessible via
    hera.workflows.Workflow.to_yaml(*args, **kwargs). This enables GitOps practices and easier debugging

Examples

Single step script

from hera.workflows import Steps, Workflow, script


@script()
def echo(message: str):
    print(message)


with Workflow(
    generate_name="single-script-",
    entrypoint="steps",
) as w:
    with Steps(name="steps"):
        echo(arguments={"message": "A"})

w.create()

DAG diamond

from hera.workflows import DAG, Workflow, script


@script()
def echo(message: str):
    print(message)


with Workflow(
    generate_name="dag-diamond-",
    entrypoint="diamond",
) as w:
    with DAG(name="diamond"):
        A = echo(name="A", arguments={"message": "A"})
        B = echo(name="B", arguments={"message": "B"})
        C = echo(name="C", arguments={"message": "C"})
        D = echo(name="D", arguments={"message": "D"})
        A >> [B, C] >> D

w.create()

See the examples directory for a collection of Argo workflow construction and submission via Hera!

Contributing

If you plan to submit contributions to Hera you can install Hera in a virtual environment managed by poetry:

poetry install

Once the dependencies are installed, you can use the various make targets to replicate the CI jobs.

make help
check-codegen                  Check if the code is up to date
ci                             Run all the CI checks
codegen                        Generate all the code
events-models                  Generate the Events models portion of Argo Workflows
events-service                 Generate the events service option of Hera
examples                       Generate all the examples
format                         Format and sort imports for source, tests, examples, etc.
help                           Showcase the help instructions for all the available `make` commands
lint                           Run a `lint` process on Hera and report problems
models                         Generate all the Argo Workflows models
services                       Generate the services of Hera
test                           Run tests for Hera
workflows-models               Generate the Workflows models portion of Argo Workflows
workflows-service              Generate the Workflows service option of Hera

Also, see the contributing guide!

Comparison

There have been other libraries available for structuring and submitting Argo Workflows:

  • Couler, which aimed to provide a unified interface for constructing and managing workflows on different workflow engines. It has now been unmaintained since its last commit in April 2022.
  • Argo Python DSL, which allows you to programmatically define Argo worfklows using Python. It was archived in October 2021.

While the aforementioned libraries provided amazing functionality for Argo workflow construction and submission, they required an advanced understanding of Argo concepts. When Dyno Therapeutics started using Argo Workflows, it was challenging to construct and submit experimental machine learning workflows. Scientists and engineers at Dyno Therapeutics used a lot of time for workflow definition rather than the implementation of the atomic unit of execution - the Python function - that performed, for instance, model training.

Hera presents an intuitive Python interface to the underlying API of Argo, with custom classes making use of context managers and callables, empowering users to focus on their own executable payloads rather than workflow setup.

Here's a side by side comparison of Hera, Couler, and Argo Python DSL

You will see how Hera has focused on reducing the complexity of Argo concepts while also reducing the total lines of code required to construct the diamond example, which can be found in the upstream Argo repository.

HeraCoulerArgo Python DSL

from hera.workflows import DAG, Container, Parameter, Workflow

with Workflow(
    generate_name="dag-diamond-",
    entrypoint="diamond",
) as w:
    echo = Container(
        name="echo",
        image="alpine:3.7",
        command=["echo", "{{inputs.parameters.message}}"],
        inputs=[Parameter(name="message")],
    )
    with DAG(name="diamond"):
        A = echo(name="A", arguments={"message": "A"})
        B = echo(name="B", arguments={"message": "B"})
        C = echo(name="C", arguments={"message": "C"})
        D = echo(name="D", arguments={"message": "D"})
        A >> [B, C] >> D

w.create()

import couler.argo as couler
from couler.argo_submitter import ArgoSubmitter


def job(name):
    couler.run_container(
        image="docker/whalesay:latest",
        command=["cowsay"],
        args=[name],
        step_name=name,
    )


def diamond():
    couler.dag(
        [
            [lambda: job(name="A")],
            [lambda: job(name="A"), lambda: job(name="B")],  # A -> B
            [lambda: job(name="A"), lambda: job(name="C")],  # A -> C
            [lambda: job(name="B"), lambda: job(name="D")],  # B -> D
            [lambda: job(name="C"), lambda: job(name="D")],  # C -> D
        ]
    )


diamond()
submitter = ArgoSubmitter()
couler.run(submitter=submitter)

from argo.workflows.dsl import Workflow

from argo.workflows.dsl.tasks import *
from argo.workflows.dsl.templates import *


class DagDiamond(Workflow):

    @task
    @parameter(name="message", value="A")
    def A(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="B")
    @dependencies(["A"])
    def B(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="C")
    @dependencies(["A"])
    def C(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="D")
    @dependencies(["B", "C"])
    def D(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @template
    @inputs.parameter(name="message")
    def echo(self, message: V1alpha1Parameter) -> V1Container:
        container = V1Container(
            image="alpine:3.7",
            name="echo",
            command=["echo", "{{inputs.parameters.message}}"],
        )

        return container

Project details


Release history Release notifications | RSS feed

This version

5.4.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hera_workflows-5.4.1.tar.gz (246.3 kB view details)

Uploaded Source

Built Distribution

hera_workflows-5.4.1-py3-none-any.whl (286.4 kB view details)

Uploaded Python 3

File details

Details for the file hera_workflows-5.4.1.tar.gz.

File metadata

  • Download URL: hera_workflows-5.4.1.tar.gz
  • Upload date:
  • Size: 246.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for hera_workflows-5.4.1.tar.gz
Algorithm Hash digest
SHA256 edd2c86a387d8822d73fc354d76ef097d13f74b2a66af9a3a3768ee3fec2a6ac
MD5 06ff3d52cd77c12e6cff6e396441fe8e
BLAKE2b-256 fd6cad2ff870fc9d4e4bc7ae78b7e4143f84b2a6000b8ba14f06f5ab12d49009

See more details on using hashes here.

File details

Details for the file hera_workflows-5.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for hera_workflows-5.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 48988d9335f7a4d047e4f037dead625eb396b0f7e55209e6658a385bb45faa47
MD5 a46ccb0d15d0f761a46ff09b9cb8f48d
BLAKE2b-256 70da22d831e9cad8dd9b647aa077859d1debdea5a35daad4fe8bb6a1416e4673

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page