PyTorch implementation of HighResNet
Project description
HighRes3DNet
PyTorch implementation of HighRes3DNet from Li et al. 2017, On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task.
All the information about how the weights were ported from NiftyNet can be found in my submission to the MICCAI Educational Challenge 2019.
A 2D version (HighRes2DNet
) is also available.
Installation
1. Install PyTorch
Within a conda
environment:
$ conda create -n deepgif python -y
$ conda activate deepgif
(deepgif) $ conda install pytorch torchvision cudatoolkit=10.0 -c pytorch -y
2. Install the pip
package
(deepgif) $ pip install highresnet
>>> from highresnet import HighRes3DNet
>>> model = HighRes3DNet(in_channels=1, out_channels=160)
Usage
PyTorch Hub
If you are using pytorch>=1.2.0
, you can import the model
directly from this repository using PyTorch Hub.
>>> import torch
>>> repo = 'fepegar/highresnet'
>>> model_name = 'highres3dnet'
>>> print(torch.hub.help(repo, model_name))
"HighRes3DNet by Li et al. 2017 for T1-MRI brain parcellation"
"pretrained (bool): load parameters from pretrained model"
>>> model = torch.hub.load(repo, model_name, pretrained=True)
Command line interface
(deepgif) $ deepgif t1_mri.nii.gz parcellation.nii.gz
Using cache found in /home/fernando/.cache/torch/hub/fepegar_highresnet_master
100%|███████████████████████████████████████████| 36/36 [01:13<00:00, 2.05s/it]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
highresnet-0.4.1.tar.gz
(10.6 kB
view details)
File details
Details for the file highresnet-0.4.1.tar.gz
.
File metadata
- Download URL: highresnet-0.4.1.tar.gz
- Upload date:
- Size: 10.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.14.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bc684463b59e8c7efcc400939209e506c587a66792e55d49f8e45a6ccdb2cea1 |
|
MD5 | afac5aa20d15aa70e82e2d634e5162cb |
|
BLAKE2b-256 | 8b421d48acf61a9d1be95d8775b7512d15a88e346463063bacf2d46545d6092d |