Skip to main content

Multiple-target machine learning

Project description

Himalaya implements machine learning linear models in Python, focusing on computational efficiency for large numbers of targets.

Github Python License

Use himalaya if you need a library that:

  • estimates linear models on large numbers of targets,

  • runs on CPU and GPU hardware,

  • provides estimators compatible with scikit-learn’s API.

Example

import numpy as np
n_samples, n_features, n_targets = 10, 5, 4
np.random.seed(0)
X = np.random.randn(n_samples, n_features)
Y = np.random.randn(n_samples, n_targets)

from himalaya.ridge import RidgeCV
model = RidgeCV(alphas=[1, 10, 100])
model.fit(X, Y)
print(model.best_alphas_)  # [ 10. 100.  10. 100.]
  • The model RidgeCV uses the same API as scikit-learn estimators, with methods such as fit, predict, score, etc.

  • The model is able to efficiently fit a large number of targets (routinely used with 100k targets).

  • The model selects the best hyperparameter alpha for each target independently.

Check more examples of use of himalaya in the gallery of examples.

Models

Himalaya implements the following models:

  • Ridge

  • RidgeCV

  • GroupRidgeCV

  • KernelRidge

  • KernelRidgeCV

  • WeightedKernelRidge

  • MultipleKernelRidgeCV

  • SparseGroupLassoCV

Himalaya backends

Himalaya can be used seamlessly with different backends. The available backends are numpy (default), cupy, and pytorch. To change the backend (e.g. to cupy), call:

from himalaya.backend import set_backend
backend = set_backend("cupy")

and give cupy arrays inputs to the himalaya solvers. For convenience, estimators implementing scikit-learn’s API can cast arrays to the correct input type.

GPU acceleration

To run himalaya on a graphics processing unit (GPU), you can use both cupy or pytorch backends.

To use the cupy backend, call:

from himalaya.backend import set_backend
backend = set_backend("cupy")

data = backend.asarray(data)  # cupy arrays are always on GPU

To use the pytorch backend, call:

from himalaya.backend import set_backend
set_backend("torch")

data = backend.asarray(data)  # torch tensors are on CPU by default...
data = data.cuda()  # ...and you can move them to GPU with the `cuda` method.

# or directly use
set_backend("torch_cuda")
data = backend.asarray(data)

Installation

Dependencies

Himalaya requires:

  • Python 3

  • Numpy

  • Scikit-learn

  • PyTorch (optional GPU backend)

  • Cupy (optional GPU backend)

  • Matplotlib (optional, for visualization only)

  • Pytest (optional, for testing only)

Standard installation

You may install the latest version of himalaya using the package manager pip, which will automatically download himalaya from the Python Package Index (PyPI):

pip install himalaya

Installation from source

To install himalaya from the latest source (main branch), you may call:

pip install git+https://github.com/gallantlab/himalaya.git

Developers can also install himalaya in editable mode via:

git clone https://github.com/gallantlab/himalaya
cd himalaya
pip install --editable .

Cite this package

If you use himalaya in your work, please cite our (future) publication:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

himalaya-0.3.1.tar.gz (94.9 kB view details)

Uploaded Source

Built Distribution

himalaya-0.3.1-py3-none-any.whl (75.3 kB view details)

Uploaded Python 3

File details

Details for the file himalaya-0.3.1.tar.gz.

File metadata

  • Download URL: himalaya-0.3.1.tar.gz
  • Upload date:
  • Size: 94.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.3

File hashes

Hashes for himalaya-0.3.1.tar.gz
Algorithm Hash digest
SHA256 e9cc74c4bc02b534645b37ef9b8a9e6b69ecfa447f5ac5f5167b8ed0ca0d0ba7
MD5 ed5ac8eb1fe381b390b8b70487019189
BLAKE2b-256 49530483efc24455106cd0e29f17751b8c7fd57d6aba17f7677f96173ba43346

See more details on using hashes here.

File details

Details for the file himalaya-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: himalaya-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 75.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.3

File hashes

Hashes for himalaya-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9cc45b74632ef9cc6df705893ea1c632449ac91d92385e8323b670e17ae7bdb6
MD5 bd57b44d81749ead426a49f9143784dd
BLAKE2b-256 3f360eb9da747ff7841d058fe756babd17a2a0ab5dfd12e7f9444268500501f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page