Skip to main content

Hist classes and utilities

Project description

histogram

Hist

Actions Status Documentation Status pre-commit.ci status Code style: black

PyPI version Conda-Forge PyPI platforms DOI

GitHub Discussion Gitter Scikit-HEP

Hist is a analyst friendly front-end for boost-histogram, designed for Python 3.7+ (3.6 users get version 2.3). See what's new.

Installation

You can install this library from PyPI with pip:

python3 -m pip install "hist[plot]"

If you do not need the plotting features, you can skip the [plot] extra.

Features

Hist currently provides everything boost-histogram provides, and the following enhancements:

  • Hist augments axes with names:

    • name= is a unique label describing each axis
    • label= is an optional string that is used in plotting (defaults to name if not provided)
    • Indexing, projection, and more support named axes
    • Experimental NamedHist is a Hist that disables most forms of positional access
  • The Hist class augments bh.Histogram with reduced typing construction:

    • Optional import-free construction system
    • flow=False is a fast way to turn off flow for the axes on construction
    • Storages can be given by string
    • storage= can be omitted
    • data= can initialize a histogram with existing data
    • Hist.from_columns can be used to initialize with a DataFrame or dict
  • Hist implements UHI+; an extension to the UHI (Unified Histogram Indexing) system designed for import-free interactivity:

    • Uses j suffix to switch to data coordinates in access or slices
    • Uses j suffix on slices to rebin
    • Strings can be used directly to index into string category axes
  • Quick plotting routines encourage exploration:

    • .plot() provides 1D and 2D plots (or use plot1d(), plot2d())
    • .plot2d_full() shows 1D projects around a 2D plot
    • .plot_ratio(...) make a ratio plot between the histogram and another histogram or callable
    • .plot_pull(...) performs a pull plot
    • .plot_pie() makes a pie plot
    • .show() provides a nice str printout using Histoprint
  • Extended Histogram features:

    • .density() computes the density as an array
    • .profile(remove_ax) can convert a ND COUNT histogram into a (N-1)D MEAN histogram
  • New modules

    • intervals supports frequentist coverage intervals
  • Notebook ready: Hist has gorgeous in-notebook representation.

    • No dependencies required

Usage

from hist import Hist

# Quick construction, no other imports needed:
h = (
  Hist.new
  .Reg(10, 0 ,1, name="x", label="x-axis")
  .Var(range(10), name="y", label="y-axis")
  .Int64()
)

# Filling by names is allowed:
h.fill(y=[1, 4, 6], x=[3, 5, 2])

# Names can be used to manipulate the histogram:
h.project("x")
h[{"y": 0.5j + 3, "x": 5j}]

# You can access data coordinates or rebin with a `j` suffix:
h[.3j:, ::2j] # x from .3 to the end, y is rebinned by 2

# Elegant plotting functions:
h.plot()
h.plot2d_full()
h.plot_pull(Callable)

Development

From a git checkout, run:

python -m pip install -e .[dev]

See CONTRIBUTING.md for information on setting up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Nino Lau

🚧 💻 📖

Chris Burr

💻

Nick Amin

💻

Eduardo Rodrigues

💻

Andrzej Novak

💻

Matthew Feickert

💻

This project follows the all-contributors specification.

Talks


Acknowledgements

This library was primarily developed by Henry Schreiner and Nino Lau.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hist-2.3.0.tar.gz (194.2 kB view details)

Uploaded Source

Built Distribution

hist-2.3.0-py3-none-any.whl (30.2 kB view details)

Uploaded Python 3

File details

Details for the file hist-2.3.0.tar.gz.

File metadata

  • Download URL: hist-2.3.0.tar.gz
  • Upload date:
  • Size: 194.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for hist-2.3.0.tar.gz
Algorithm Hash digest
SHA256 3be183cb7e36247e56bbecaa278ee70e7c81d6f984c0fd01e26d367866f7f66d
MD5 ebcae90efefbdcfb1facbe96a6ce471a
BLAKE2b-256 b7879af6ff51ed4db79764c9ab86308a33011b7be6a837ea8c2e56c4eea9fa85

See more details on using hashes here.

File details

Details for the file hist-2.3.0-py3-none-any.whl.

File metadata

  • Download URL: hist-2.3.0-py3-none-any.whl
  • Upload date:
  • Size: 30.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for hist-2.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 137ebac13210c9e3da16e2d76615199c9864daaa5f30fd5f046099868d9cd21f
MD5 d26246d7790aad226d9e64a0bcdbadcc
BLAKE2b-256 25ffa2c633f5caa2282501e390ddac0191b87d90779ef97416ae7fc39335f8b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page