Skip to main content

Hist classes and utilities

Project description

histogram

Hist

Actions Status Documentation Status pre-commit.ci status Code style: black

PyPI version Conda-Forge PyPI platforms DOI

GitHub Discussion Gitter Scikit-HEP

Hist is an analyst-friendly front-end for boost-histogram, designed for Python 3.7+ (3.6 users get version 2.4). See what's new.

Slideshow of features. See docs/banner_slides.md for text if the image is not readable.

Installation

You can install this library from PyPI with pip:

python3 -m pip install "hist[plot]"

If you do not need the plotting features, you can skip the [plot] extra.

Features

Hist currently provides everything boost-histogram provides, and the following enhancements:

  • Hist augments axes with names:

    • name= is a unique label describing each axis.
    • label= is an optional string that is used in plotting (defaults to name if not provided).
    • Indexing, projection, and more support named axes.
    • Experimental NamedHist is a Hist that disables most forms of positional access, forcing users to use only names.
  • The Hist class augments bh.Histogram with simpler construction:

    • flow=False is a fast way to turn off flow for the axes on construction.
    • Storages can be given by string.
    • storage= can be omitted, strings and storages can be positional.
    • data= can initialize a histogram with existing data.
    • Hist.from_columns can be used to initialize with a DataFrame or dict.
    • You can cast back and forth with boost-histogram (or any other extensions).
  • Hist support QuickConstruct, an import-free construction system that does not require extra imports:

    • Use Hist.new.<axis>().<axis>().<storage>().
    • Axes names can be full (Regular) or short (Reg).
    • Histogram arguments (like data=) can go in the storage.
  • Extended Histogram features:

    • Direct support for .name and .label, like axes.
    • .density() computes the density as an array.
    • .profile(remove_ax) can convert a ND COUNT histogram into a (N-1)D MEAN histogram.
    • .sort(axis) supports sorting a histogram by a categorical axis. Optionally takes a function to sort by.
  • Hist implements UHI+; an extension to the UHI (Unified Histogram Indexing) system designed for import-free interactivity:

    • Uses j suffix to switch to data coordinates in access or slices.
    • Uses j suffix on slices to rebin.
    • Strings can be used directly to index into string category axes.
  • Quick plotting routines encourage exploration:

    • .plot() provides 1D and 2D plots (or use plot1d(), plot2d())
    • .plot2d_full() shows 1D projects around a 2D plot.
    • .plot_ratio(...) make a ratio plot between the histogram and another histogram or callable.
    • .plot_pull(...) performs a pull plot.
    • .plot_pie() makes a pie plot.
    • .show() provides a nice str printout using Histoprint.
  • Stacks: work with groups of histograms with identical axes

    • Stacks can be created with h.stack(axis), using index or name of an axis (StrCategory axes ideal).
    • You can also create with hist.stacks.Stack(h1, h2, ...), or use from_iter or from_dict.
    • You can index a stack, and set an entry with a matching histogram.
    • Stacks support .plot() and .show(), with names (plot labels default to original axes info).
    • Stacks pass through .project, *, +, and -.
  • New modules

    • intervals supports frequentist coverage intervals.
  • Notebook ready: Hist has gorgeous in-notebook representation.

    • No dependencies required

Usage

from hist import Hist

# Quick construction, no other imports needed:
h = (
  Hist.new
  .Reg(10, 0 ,1, name="x", label="x-axis")
  .Var(range(10), name="y", label="y-axis")
  .Int64()
)

# Filling by names is allowed:
h.fill(y=[1, 4, 6], x=[3, 5, 2])

# Names can be used to manipulate the histogram:
h.project("x")
h[{"y": 0.5j + 3, "x": 5j}]

# You can access data coordinates or rebin with a `j` suffix:
h[.3j:, ::2j] # x from .3 to the end, y is rebinned by 2

# Elegant plotting functions:
h.plot()
h.plot2d_full()
h.plot_pull(Callable)

Development

From a git checkout, either use nox, or run:

python -m pip install -e .[dev]

See Contributing guidelines for information on setting up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Nino Lau

🚧 💻 📖

Chris Burr

💻

Nick Amin

💻

Eduardo Rodrigues

💻

Andrzej Novak

💻

Matthew Feickert

💻

Kyle Cranmer

📖

Daniel Antrim

💻

Nicholas Smith

💻

Michael Eliachevitch

💻

This project follows the all-contributors specification.

Talks


Acknowledgements

This library was primarily developed by Henry Schreiner and Nino Lau.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hist-2.5.2.tar.gz (988.1 kB view details)

Uploaded Source

Built Distribution

hist-2.5.2-py3-none-any.whl (35.0 kB view details)

Uploaded Python 3

File details

Details for the file hist-2.5.2.tar.gz.

File metadata

  • Download URL: hist-2.5.2.tar.gz
  • Upload date:
  • Size: 988.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hist-2.5.2.tar.gz
Algorithm Hash digest
SHA256 0bafb8b956cc041f1b26e8f5663fb8d3b8f7673f56336facb84d8cfdc30ae2cf
MD5 0629dcc4bc592bab8ac17d190b0d54bb
BLAKE2b-256 b23568aee1e35f8177e52f5e22e12552fcc3adc4932b553e0746ccba9fec6ebf

See more details on using hashes here.

File details

Details for the file hist-2.5.2-py3-none-any.whl.

File metadata

  • Download URL: hist-2.5.2-py3-none-any.whl
  • Upload date:
  • Size: 35.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hist-2.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4d54c0b6afe62e6a1b4c8b7018b63085770b589aba4f887c02a1e49c3b4016d2
MD5 7d8c1fdd4e0f21401c671d9a6eb57391
BLAKE2b-256 7790091c1527c9fa3f6c653ba049fb7e0a197fc59b05bf84670c2c97252e199c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page