Skip to main content

A small program to analysis 1 dimensional data

Project description

Histogramy
=============================================================================

Histogramy is a CUI program to analyze 1-dimensional data.

It draw a histogram with specified data and it also can draw the fitting curve
estimated by a Gaussian Mixture Model probability distribution.

![Screenshot](https://raw.github.com/lambdalisue/Histogramy/master/static/screenshot.png)

Requirements
-----------------------------------------------------------------------------

- [Python][]
- [numpy][]
- [matplotlib][]
- [scikit-learn][]

[Python]: http://www.python.org/
[numpy]: http://www.numpy.org/
[matplotlib]: http://matplotlib.org/
[scikit-learn]: http://scikit-learn.org/dev/index.html


Install
-----------------------------------------------------------------------------

1. You have to install [Python][]. Follow the instruction at
http://www.python.org/getit/

2. You also have to instal [numpy][], and [matplotlib][].
Follow the instructions below

1. numpy: http://docs.scipy.org/doc/numpy/user/install.html
2. matplotlib: http://matplotlib.org/users/installing.html

3. Now, you can install Histogramy with [pip][] or [easy_install][].
[scikit-learn][] will be installed automatically when you install
Histogramy

1. Install [pip][] or [easy_install][], follow the instrcutions below

- pip: http://www.pip-installer.org/en/latest/installing.html
- easy_install: http://pypi.python.org/pypi/setuptools

2. Install Histogramy with the following command in Terminal (Command
Prompt)

~~~
pip install histogramy
~~~

or

~~~
easy_install histogramy
~~~

[pip]: http://www.pip-installer.org/
[easy_install]: http://pypi.python.org/pypi/setuptools


Usage
-----------------------------------------------------------------------------

usage: histogramy [-h] [-b BINS] [-c N] [-C N] [--base BASE] [--auto-base]
[--min-threshold MIN] [--max-threshold MAX]
[--covariance-type TYPE] [--min-covar MIN_COVAR]
[--delimiter DELIMITER] [--encoding ENCODING] [--demo]
[filenames [filenames ...]] {histogram,fit,plot} ...

positional arguments:
filenames
{histogram,fit,plot}
histogram Show histogram data
fit Show fitting data
plot Create graph by matplotlib

optional arguments:
-h, --help show this help message and exit
-b BINS, --bins BINS It defines the number of equal-width bins.
-c N, --column N A number of column in data file used for analysis
-C N, --classifiers N
The maximum number classifiers to simulate the fitting
--base BASE Base value to modulate the data
--auto-base Automatically find the base value to modulate the data
--min-threshold MIN Minimum threshold. Value smaller than this will be
ignored
--max-threshold MAX Maximum threshold. Value grater than this will be
ignored
--covariance-type TYPE
Type of covariance. Default is "diag"
--min-covar MIN_COVAR
Minimum value of covariance
--delimiter DELIMITER
Delimiter used to parse the data file
--encoding ENCODING Encoding used to open the data file
--demo Use demo data to analysis

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

histogramy-0.1.3.tar.gz (465.7 kB view details)

Uploaded Source

File details

Details for the file histogramy-0.1.3.tar.gz.

File metadata

  • Download URL: histogramy-0.1.3.tar.gz
  • Upload date:
  • Size: 465.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for histogramy-0.1.3.tar.gz
Algorithm Hash digest
SHA256 99dfd1ea664dc2a52a3342f7db9573d58ecf0a3eeb8099838a9796830b471e81
MD5 18cf7667616d266fed3fcfe958636d23
BLAKE2b-256 e9fe18a4da4967dd72c90bd27b9821d2167e349dcc74d4825141179ca0532e73

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page