Skip to main content

A Python toolkit for Histopathology Image Analysis

Project description

HistomicsTK is a Python package for the analysis of digital pathology images. It can function as a stand-alone library, or as a Digital Slide Archive plugin that allows users to invoke image analysis jobs through HistomicsUI. The functionality offered by HistomicsTK can be extended using slicer cli web which allows developers to integrate their image analysis algorithms into DSA for dissemination through HistomicsUI.

Whole-slide imaging captures the histologic details of tissues in large multiresolution images. Improvements in imaging technology, decreases in storage costs, and regulatory approval of digital pathology for primary diagnosis have resulted in an explosion of whole-slide imaging data. Digitization enables the application of computational image analysis and machine learning algorithms to characterize the contents of these images, and to understand the relationships between histology, clinical outcomes, and molecular data from genomic platforms. Compared to the related areas of radiology and genomics, open-source tools for the management, visualization, and analysis of digital pathology has lagged. To address this we have developed HistomicsTK in coordination with the Digital Slide Archive (DSA), a platform for managing and sharing digital pathology images in a centralized web-accessible server, and HistomicsUI, a specialized user interface for annotation and markup of whole-slide images and for running image analysis tools and for scalable visualizing of dense outputs from image analysis algorithms. HistomicsTK aims to serve the needs of both pathologists/biologists interested in using state-of-the-art algorithms to analyze their data, and algorithm researchers interested in developing new/improved algorithms and disseminate them for wider use by the community.

HistomicsTK can be used in two ways:

  • As a pure Python package: enables application of image analysis algorithms to data independent of the Digital Slide Archive (DSA). HistomicsTK provides a collection of fundamental algorithms for tasks such as color normalization, color deconvolution, nuclei segmentation, and feature extraction. Read more about these capabilities here: api-docs and examples for more information.

    Installation instructions on Linux:

    To install HistomicsTK using PyPI:

    $ python -m pip install histomicstk --find-links https://girder.github.io/large_image_wheels

    To install HistomicsTK from source:

    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"
    $ python -m pip install -e .

    HistomicsTK uses the large_image library to read content from whole-slide and microscopy image formats. Depending on your exact system, installing the necessary libraries to support these formats can be complex. There are some non-official prebuilt libraries available for Linux that can be included as part of the installation by specifying pip install histomicstk --find-links https://girder.github.io/large_image_wheels. Note that if you previously installed HistomicsTK or large_image without these, you may need to add --force-reinstall --no-cache-dir to the pip install command to force it to use the find-links option.

    The system version of various libraries are used if the --find-links option is not specified. You will need to use your package manager to install appropriate libraries (on Ubuntu, for instance, you’ll need libopenslide-dev and libtiff-dev).

    To install from source on Windows:

    1- Run the following:

    $ pip install large-image
    $ pip install cmake
    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"

    2- Run pip install libtiff

    3- Run pip install large-image-source-tiff to install typical tile sources. You may need other sources, which would require other libraries.

    4- Install Visual Studio 15 2017 Community Version

    5- Install C++ build tools. Under Tools > Get Tools and Features … > Desktop Development with C++, ensure that the first 8 boxes are checked.

    6- Run this:

    $ python -m pip install -e .
    $ pip install girder-client

    To install from source on OSX:

    Note: This needs to be confirmed and expanded by an OSX user. There are probably assumptions made about available libraries.

    Use homebrew to install libtiff and openslide or other libraries depending on your desired tile sources.

    Run:

    $ python -m pip install histomicstk large-image-source-tiff large-image-source-openslide
  • As a image-processing task library for HistomicsUI and the Digital Slide Archive: This allows end users to apply containerized analysis modules/pipelines over the web. See the Digital Slide Archive for installation instructions.

Refer to our website for more information.

Previous Versions

The HistomicsTK repository used to contain almost all of the Digital Slide Archive and HistomicsUI, and now container primarily code for image analysis algorithms and processing of annotation data. The deployment and installation code and instructions for DSA have moved to the Digital Slide Archive repository. The user interface and annotation functionality has moved to the HistomicsUI repository.

The deployment and UI code will eventually be removed from the master branch of this repository; any new development on those topics should be done in those locations.

Funding

This work is funded by the NIH grant U24-CA194362-01.

See Also

DSA/HistomicsTK project website: Demos | Success stories

Source repositories: Digital Slide Archive | HistomicsUI | large_image | slicer_cli_web

Discussion: GitHub Discussion | Discourse forum

Project details


Release history Release notifications | RSS feed

This version

1.3.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

histomicstk-1.3.0.tar.gz (205.8 kB view details)

Uploaded Source

Built Distributions

histomicstk-1.3.0-cp312-cp312-win_amd64.whl (549.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

histomicstk-1.3.0-cp312-cp312-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

histomicstk-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (629.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.0-cp312-cp312-macosx_11_0_arm64.whl (555.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

histomicstk-1.3.0-cp312-cp312-macosx_10_12_x86_64.whl (564.5 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

histomicstk-1.3.0-cp311-cp311-win_amd64.whl (547.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

histomicstk-1.3.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

histomicstk-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (640.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.0-cp311-cp311-macosx_11_0_arm64.whl (552.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

histomicstk-1.3.0-cp311-cp311-macosx_10_12_x86_64.whl (560.3 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

histomicstk-1.3.0-cp310-cp310-win_amd64.whl (547.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

histomicstk-1.3.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

histomicstk-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (641.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.0-cp310-cp310-macosx_11_0_arm64.whl (553.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

histomicstk-1.3.0-cp310-cp310-macosx_10_12_x86_64.whl (561.4 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

histomicstk-1.3.0-cp39-cp39-win_amd64.whl (549.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

histomicstk-1.3.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

histomicstk-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (643.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.0-cp39-cp39-macosx_11_0_arm64.whl (554.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

histomicstk-1.3.0-cp39-cp39-macosx_10_12_x86_64.whl (563.2 kB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

histomicstk-1.3.0-cp38-cp38-win_amd64.whl (549.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

histomicstk-1.3.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

histomicstk-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (644.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.0-cp38-cp38-macosx_11_0_arm64.whl (553.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

histomicstk-1.3.0-cp38-cp38-macosx_10_12_x86_64.whl (561.5 kB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file histomicstk-1.3.0.tar.gz.

File metadata

  • Download URL: histomicstk-1.3.0.tar.gz
  • Upload date:
  • Size: 205.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for histomicstk-1.3.0.tar.gz
Algorithm Hash digest
SHA256 3c537c476fbb0b9b9580ed3126a1f0ef64f1b7ba65548a7ae279cf2cad61705e
MD5 6b0439c6b55915a499f0ebd778f8a2a2
BLAKE2b-256 b0ef6039ba53ff4e10245cd765ea66280d7fa98a8222c3c35937bcf10b0c8377

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bfede9298abc107940a8853bad9b16b8f0da5e5736ae0f492b71285cc54769c2
MD5 de3c7b317a6eaf60db9d7dd6fc74771d
BLAKE2b-256 291c8ad2b4901c31bdea78a3db3c27b2f292f34a28bada4c602d98432e6ee6b4

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fef081328d3a35a74d4283cbdd7d94802db2b68d660b110558d3537f79c2d057
MD5 e2233e01083a87108da4cfd8a51bf8d1
BLAKE2b-256 2e4137963c970a19073d94ed915afbfbd8bf7b502427fef8c1417ac5a7e98191

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7897ebe6922acdef83b25b23750308953f662db0dd0ccf624146d1f30ec4e6b
MD5 5442e22fea72bf4ce68ac0a77c909ee9
BLAKE2b-256 f2b42b53cf557f46e70ca5ab1c88c47179a22363098b1a389d4536973bd09fd7

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 51c33d2708cb9f4b4510e24adb576d95037cca9a7025bcd59689ec4dbfaf875d
MD5 13832ae6b8bef073ee0f85976360f648
BLAKE2b-256 0dc1b377c5f681c5309004989fc2f42d93a7b3dd244bd25f3cb29e2cf518555f

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ce5a18c7318294170e47c0376a493cb079c818cd78d8368497a15a62d8a9feb9
MD5 4614f6e9495b75348e8f07ec0b0d7f13
BLAKE2b-256 0d17585832c852083a28e60e4351f8dcc7541462357b372c87e3245ba56b194f

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a551df3490fd999c94aa77bd829c218ce781cbe9c8deacfffc6ec95b084b14cc
MD5 8bc9c05222a954dfc8d496a924a3702f
BLAKE2b-256 f4ed218747ec545346f99ac7355ea6e15dff11059764c9edde2a4bbdd2706dd7

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 360d6693396460eb10613f9884d2571cc9b512bcfcbab5871de99dff39bdb691
MD5 cc5f1b368a5e25c0f3046229cb4e9688
BLAKE2b-256 f8362d07e5e77b66412a800dda2de93b836031d16906e6942b5aa8aeb984efe2

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d02ecf3dca1566e2bcc97709af0b7f08f9ca216ba36c6afb01d0730dd357dc2f
MD5 02a454751f09a2bd93b76bc7d1f77c5a
BLAKE2b-256 771226b062233156e7148de942a6426da4cf9c209529af8ef547c008cf4d3a6a

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 754ba14eca1cea84989a68f17589fa88f407355627b3206ea60d4e1c1c13cd44
MD5 2a3a0d2af6ac2637b93136626343ab53
BLAKE2b-256 aeed68af674ebb472540d50730f85b77e1f4643a5394d002f253ef42c83b8010

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 958affc21dcab22ea1fc7c7ccc4d9da7756566bd1035884a8318f29f413c25be
MD5 aec80a8a1f7f9965afb8dac1b9520307
BLAKE2b-256 0b2ec82486151218c1d742e9e5d18d60777bbc5c5557533d3d5916ff4c81a818

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4fbd1436d3e4df3b6e2bb34329c5e1d75a7765062809a5bb174c5951cd0d7a71
MD5 d1bb138c437403f1570976043b46da84
BLAKE2b-256 ffa0d894e2bd0544d9994494405a263d931a1318619dc4072a14c949018efeab

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7a76a060f848a6122bb6793c02dac14489cfc2297fa43ce5f9967f8bcb73c425
MD5 027c303b24dc82ca229d13fecd1ab083
BLAKE2b-256 72b1eec5532113085b22f23c5617bd2e352e4a8f24cbae0e7efdcbc5b71e2244

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa191a08e3a7afed1f458d134c491bbae70e83444da9f6f17a0a725377f50f88
MD5 d9158263a68251b992d0cf5d1b443f04
BLAKE2b-256 ae890f7eb5e454a4570fab48e5c125ee4dca8aa6df06bb9b7f156a102ec11d4e

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5f6d96dd9308c2ccf23c03f5b55152b9df959a4f8479ac7f48899448d19a7c9f
MD5 9317756c1a4433c707b3c5cab2cadcf1
BLAKE2b-256 0040338648225e17ce8c8b89d3d8a843cd6227ccebd39d24f53d4a4bc12fa20d

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 3d66e0f7a3ac42a710f6a6b32a3023ff63ce64ca8dc110bc8fcf152a58443efa
MD5 5649df9823f11a827187f346b3a78761
BLAKE2b-256 e66c21e057e695f1b416f56e5bd7ff8465149ca3ee0c395dd385e576ad1f580d

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c425d3eb6c6848c5bb580ea4c895a970d673831f8d1546a9e26812bf49495e8d
MD5 eceac9ba57d8343ae1d6444b0b11062f
BLAKE2b-256 f8e0969c7ac5917b4b1e225a0616558084a69961117910c542bedfe741bba8c4

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b9ad9e4c38f3ec1c7edc917b95da316d16ef660884af16fc859f63cd1b86dea7
MD5 de6e792749cb3386d73edde2951ccffb
BLAKE2b-256 30da76a8c77ca4ca11b7db4e46cfd1934ac2480221eb100d7c61d9346ac2febc

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad7c29cb116e69dcc2350d5156c1b17294b06322b443d4294e2ca5742ebb440f
MD5 235095bc22b73394ced03e1fc6a9e90e
BLAKE2b-256 fe80764b452c10488021bbf615b5f03fa45c63f691fefb83745f52eec97f3026

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64ddd038070ea0da26197e7c875520f8059c53d5da6fe68d302c97adab630c24
MD5 23c24ed4441de4c70e3b6a14404b16a5
BLAKE2b-256 ffcab5b793eaae2249a7212243a7f3516754e30c67b0ba3109313df2f2c7922b

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 072e79d7d03964bc4785bf03eaa206d274f8eaf711a05d8f7a22fe49db2844d2
MD5 c139a97fd8e4ed802091733c877fb0f0
BLAKE2b-256 248104662e15265ed66ae84bb0a122884f4428ca8f4949799f1d8417773f26f1

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f5e4639d1bb68622f66315b77bfed188dee00566d9bc400852a6d701cbbbfacb
MD5 e501d2c8ffba73577d001906b9d38ca1
BLAKE2b-256 be6ae0454724804a96c38a2d2e4bbb66850fbbceffcc5fdf51c5204fb1ce4244

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c06565ee3ec7acd1dd299bfc1a622ce5bff60489d05da3444233c92bd28bf7d0
MD5 88a1e0c8bb363adb0d24a75c6bb133b1
BLAKE2b-256 b40704d431e2be0c131a1250949c91a8f95f9fe1a18b9584fab3d260757991f6

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e0fb580bde4c1942831483f28a9c923d2211d3d8b9218a537aa094a49159ab2
MD5 fcfc3014d642e5d9743fa28a82c3166d
BLAKE2b-256 35d74f8ff3d52d37450e3849dd2334a553d95d483190577ed6c5e056b81e679b

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e04e2ba3e1b555e926f42d036f5d70875e3bdc104dee90128583eb55a2299b8
MD5 2c744fc0f582d99f6647dbe949d116f8
BLAKE2b-256 76495cdffc220287297de8a2568cf68b623fb112d9a8b4cc15e7e46c87b3688c

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.0-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.0-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 afe609ffde81de7e9b2eccc6fa2a5df35c5b35b9ab11b62bd42960f0696cf980
MD5 f99fd982f0eebcc2f2145405bd0559c0
BLAKE2b-256 ad651c38c59be28b2428f470c9fc084a7831e0783953be77ebf182c5f78a3feb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page