Skip to main content

A Python toolkit for Histopathology Image Analysis

Project description

HistomicsTK is a Python package for the analysis of digital pathology images. It can function as a stand-alone library, or as a Digital Slide Archive plugin that allows users to invoke image analysis jobs through HistomicsUI. The functionality offered by HistomicsTK can be extended using slicer cli web which allows developers to integrate their image analysis algorithms into DSA for dissemination through HistomicsUI.

Whole-slide imaging captures the histologic details of tissues in large multiresolution images. Improvements in imaging technology, decreases in storage costs, and regulatory approval of digital pathology for primary diagnosis have resulted in an explosion of whole-slide imaging data. Digitization enables the application of computational image analysis and machine learning algorithms to characterize the contents of these images, and to understand the relationships between histology, clinical outcomes, and molecular data from genomic platforms. Compared to the related areas of radiology and genomics, open-source tools for the management, visualization, and analysis of digital pathology has lagged. To address this we have developed HistomicsTK in coordination with the Digital Slide Archive (DSA), a platform for managing and sharing digital pathology images in a centralized web-accessible server, and HistomicsUI, a specialized user interface for annotation and markup of whole-slide images and for running image analysis tools and for scalable visualizing of dense outputs from image analysis algorithms. HistomicsTK aims to serve the needs of both pathologists/biologists interested in using state-of-the-art algorithms to analyze their data, and algorithm researchers interested in developing new/improved algorithms and disseminate them for wider use by the community.

HistomicsTK can be used in two ways:

  • As a pure Python package: enables application of image analysis algorithms to data independent of the Digital Slide Archive (DSA). HistomicsTK provides a collection of fundamental algorithms for tasks such as color normalization, color deconvolution, nuclei segmentation, and feature extraction. Read more about these capabilities here: api-docs and examples for more information.

    Installation instructions on Linux:

    To install HistomicsTK using PyPI:

    $ python -m pip install histomicstk --find-links https://girder.github.io/large_image_wheels

    To install HistomicsTK from source:

    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"
    $ python -m pip install -e .

    HistomicsTK uses the large_image library to read content from whole-slide and microscopy image formats. Depending on your exact system, installing the necessary libraries to support these formats can be complex. There are some non-official prebuilt libraries available for Linux that can be included as part of the installation by specifying pip install histomicstk --find-links https://girder.github.io/large_image_wheels. Note that if you previously installed HistomicsTK or large_image without these, you may need to add --force-reinstall --no-cache-dir to the pip install command to force it to use the find-links option.

    The system version of various libraries are used if the --find-links option is not specified. You will need to use your package manager to install appropriate libraries (on Ubuntu, for instance, you’ll need libopenslide-dev and libtiff-dev).

    To install from source on Windows:

    1- Run the following:

    $ pip install large-image
    $ pip install cmake
    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"

    2- Run pip install libtiff

    3- Run pip install large-image-source-tiff to install typical tile sources. You may need other sources, which would require other libraries.

    4- Install Visual Studio 15 2017 Community Version

    5- Install C++ build tools. Under Tools > Get Tools and Features … > Desktop Development with C++, ensure that the first 8 boxes are checked.

    6- Run this:

    $ python -m pip install -e .
    $ pip install girder-client

    To install from source on OSX:

    Note: This needs to be confirmed and expanded by an OSX user. There are probably assumptions made about available libraries.

    Use homebrew to install libtiff and openslide or other libraries depending on your desired tile sources.

    Run:

    $ python -m pip install histomicstk large-image-source-tiff large-image-source-openslide
  • As a image-processing task library for HistomicsUI and the Digital Slide Archive: This allows end users to apply containerized analysis modules/pipelines over the web. See the Digital Slide Archive for installation instructions.

Refer to our website for more information.

Previous Versions

The HistomicsTK repository used to contain almost all of the Digital Slide Archive and HistomicsUI, and now container primarily code for image analysis algorithms and processing of annotation data. The deployment and installation code and instructions for DSA have moved to the Digital Slide Archive repository. The user interface and annotation functionality has moved to the HistomicsUI repository.

The deployment and UI code will eventually be removed from the master branch of this repository; any new development on those topics should be done in those locations.

Funding

This work is funded by the NIH grant U24-CA194362-01.

See Also

DSA/HistomicsTK project website: Demos | Success stories

Source repositories: Digital Slide Archive | HistomicsUI | large_image | slicer_cli_web

Discussion: GitHub Discussion | Discourse forum

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

histomicstk-1.3.2.dev7.tar.gz (207.0 kB view details)

Uploaded Source

Built Distributions

histomicstk-1.3.2.dev7-cp312-cp312-win_amd64.whl (551.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

histomicstk-1.3.2.dev7-cp312-cp312-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

histomicstk-1.3.2.dev7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (631.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.2.dev7-cp312-cp312-macosx_11_0_arm64.whl (557.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

histomicstk-1.3.2.dev7-cp312-cp312-macosx_10_12_x86_64.whl (566.1 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

histomicstk-1.3.2.dev7-cp311-cp311-win_amd64.whl (549.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

histomicstk-1.3.2.dev7-cp311-cp311-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

histomicstk-1.3.2.dev7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (642.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.2.dev7-cp311-cp311-macosx_11_0_arm64.whl (554.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

histomicstk-1.3.2.dev7-cp311-cp311-macosx_10_12_x86_64.whl (561.9 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

histomicstk-1.3.2.dev7-cp310-cp310-win_amd64.whl (549.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

histomicstk-1.3.2.dev7-cp310-cp310-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

histomicstk-1.3.2.dev7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (643.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.2.dev7-cp310-cp310-macosx_11_0_arm64.whl (554.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

histomicstk-1.3.2.dev7-cp310-cp310-macosx_10_12_x86_64.whl (563.1 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

histomicstk-1.3.2.dev7-cp39-cp39-win_amd64.whl (551.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

histomicstk-1.3.2.dev7-cp39-cp39-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

histomicstk-1.3.2.dev7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (644.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.2.dev7-cp39-cp39-macosx_11_0_arm64.whl (556.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

histomicstk-1.3.2.dev7-cp39-cp39-macosx_10_12_x86_64.whl (564.8 kB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

histomicstk-1.3.2.dev7-cp38-cp38-win_amd64.whl (551.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

histomicstk-1.3.2.dev7-cp38-cp38-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

histomicstk-1.3.2.dev7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (646.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.2.dev7-cp38-cp38-macosx_11_0_arm64.whl (554.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

histomicstk-1.3.2.dev7-cp38-cp38-macosx_10_12_x86_64.whl (563.2 kB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file histomicstk-1.3.2.dev7.tar.gz.

File metadata

  • Download URL: histomicstk-1.3.2.dev7.tar.gz
  • Upload date:
  • Size: 207.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for histomicstk-1.3.2.dev7.tar.gz
Algorithm Hash digest
SHA256 65d8005fd84e11728a322b1c6075c16560b8f15ead4aaa1620e8fec477ed66fa
MD5 7c8df34f4ead6c74a84802094c4a5da8
BLAKE2b-256 350acb115b16927af5ce0306e7e0f22b6744f6852f01da5c73a0e62c5fe3ad7f

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1dca55b988c14b30d3b02d7f94cc2d30aa5d6f9e3638a0ae3d3e16ca288a3f2e
MD5 595861ca3464274dcf6befc264872e0a
BLAKE2b-256 69e1d8eaf2f9261d3174e24b748a1899e33c518e79577c4eafe6fe98a494c4fd

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 807b710eaa432e724c4aca730c39d285f97d0027de2318fcfcd421e400981db4
MD5 67fb1fb4b3796e023c3955491bbca045
BLAKE2b-256 d69585f82c8e40968de122be22758f834aecf528c6adb331303b151a8342ab0f

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8fc05d1c8add17e877ff63810f9e6d4f294177b58d47240814bc30f2000d22b
MD5 da7e5098cdd7e2a51e2dcdf23343e68b
BLAKE2b-256 39115ddff9b2cc86a951ba5c4d8ea1b9202f1e8089238c7fc91d416b27eded70

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64dfe62ff7ef0e40631d5df463274512f509ec56bc5e9e513c8fa5a970afd39e
MD5 4ac01aad8a8bbf1de971d601b07834d4
BLAKE2b-256 18f4605e3e8ca4382958c7073d7320822614435d783e095523963aece1b2c601

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d633c68429e6db772e757d38247942c978228bc90d367e1b3a336383d47ac158
MD5 0da4e0680a8c2d9c3b5ec69ab5cb71da
BLAKE2b-256 050b21ac782192bad7f28207e34015bdcf2cc7fdc72adc79acc91e18d4998796

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 35941578041c96e7428e74dc77eaaa0d0c877e772ec7ec69e85220f82385cffa
MD5 9e553b00cf0178d77c5a9f18147fec92
BLAKE2b-256 4da62dd45bb242f88a854763928285b4ff9dcbf7db2a3c393bf0daa187abac05

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6fed391b967c9ffa12611a47db45dcd99a35d34e233afc7419597375c53b17ca
MD5 be1e2c15746f48ec0078d965887b9c7a
BLAKE2b-256 9af3190541c1f4bc9f3ef582bd709d534b1385d2dbc3c3495f35ac3d2565d52c

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67f4a867302cba63be64a60bf088bd4b2e2cfba111fe3c9e156f20fd6b11bbc6
MD5 4c644aa9ce2a0ca31799e93171511866
BLAKE2b-256 4dc8cf35db9778204773e346d7f1dfc0105d55db3fa5b875e0ce3ed6600642e2

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5c8fbe3ed4cf1e7d4817bcb618ab63d946d7703c1fb728701034e042016f180
MD5 cf9f9cf438ec48d4a435c99d3481fbc3
BLAKE2b-256 1660a939c36a0e5fb1143352ef651cb390a514df4f349bf0a48c09d2d1785ab9

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9652210dcd43ed19e98160786560a7f92874086b7e46b39ec6c49911d071a6dd
MD5 6f4818f2af978d40c3984599242b1a14
BLAKE2b-256 ac861d8512043681173a9e29035acc1203c78c48b9ef5822ae5584008fbed30e

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dd7a7228903b2a080c2594721d5db79bf5b3ff6cea102091652f8dc26f76d58b
MD5 c2790c12a61dfbcfa76315c4c3675354
BLAKE2b-256 813a647ce4588d7fcb2a86ba135de9a51387837e349b121f704646d77d83538f

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f1258baef0759f806e68f4c5aaf8956638baaac3dbc69b1e281705cf38866a0a
MD5 4d8619ffa291b87ad9490900f4532f4b
BLAKE2b-256 6af8125b9dc21bec672088c219248d1f169da542c4bb662c370e12162fd37934

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b5754c54d08310de636dd7014679d231c08cd39cd57e9facff70a669cd021727
MD5 2c8661926a518ad81afc167f4184f7f7
BLAKE2b-256 4bc53db83b35bba6fe4e89895d24c8b93070c156b78f8616a400d26ee60c4e59

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0becb4065c5e20b26bc3c882b02267adf5ccff909fda68a090f26f6302f457a6
MD5 f243574ab7d1f6a2a0848a5eb19603df
BLAKE2b-256 0528528c601951fe9c9a6a16e87f9a239ea65f8199d6aa94b959ed2e4f1d51ea

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 693cbe6f54ec9e0c88cae34e64f99692bef9e585e3509a4dec0bb2d372c418e0
MD5 7169f690367186c51bd93ae3e54a9a75
BLAKE2b-256 148c025110bd02bd9308185d2a795920b6e9b637a51a2323cc6aae0587b7b686

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0dcf0f5ca729463d2c63524d157025adea2e5054a27de91962863f042923ae2f
MD5 61c460be402acce8e1c9eb14bcd7af48
BLAKE2b-256 45233ee4053985cae02f87b6c8223799564093d92480d426b4ce3189702c833b

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cdeace6af3ae13110701fd5ec3a78eaada571c6a184b3eba115622dec6b19260
MD5 07d04f5b37bc61954b294b04056a2698
BLAKE2b-256 e334f8789a7bd698f9f80369c1122d8b024dda997b98c7064845096c5479ef66

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cba7b33b25e9e5a1949da6cddc8ccbdcbc14308ce047c06cf4fd2bf753d54a66
MD5 332f82885ac9e2cda19de63f68672bd2
BLAKE2b-256 4a0c5b818510378f90464285045d3d31948182c5a518d3be807e4ed72f2e9d40

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a89235f297827043ea31f80197f62efe262fc9f5512aefdb741d9aa20ee1cc65
MD5 1ac974783861ceae2e44b201bfcc9b74
BLAKE2b-256 b7eee7f1f1199da3c2a787a4740c7f981f989acc5bfb463bb087fd676766bb3a

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f1c686c9e1a28a334fcf77d929077bc2eab991c0b9b8f4d166082f721c6405d1
MD5 2593400ec86df916cc6b7797f8acb08b
BLAKE2b-256 48e8c4e5269d0e292312cacef88fc3bf94e122bfbc2aa03d039ff63899438db3

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c7883abfe5a89b8a8420cf3327e04a361f2e4ffe1758d27b766ac90dc9c816a3
MD5 4d37ad1401faabe524b8a66eb8df473a
BLAKE2b-256 03275957abc5e37fdd44ad4a999e18269a38561cfa85a1fcecdd54ff3de7a30b

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4624a65241d1c2558ebcbf33b57959bc01ff7b82d34b4de1d59423638807e10d
MD5 b65c6bfc83cac366eea76436d76d65e4
BLAKE2b-256 d7eefc01c87093ea46675a8ddc1db25c3b947153f9814b601a2ec804ad71b0cc

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f50d28f95e2b255022067f9c3d44ba846073a379239fe3be80ea09300e1cc5a
MD5 13fbee46716d27ab703acb39608d947f
BLAKE2b-256 bcf4c429419a8541e240df80fe525e16be539772f3c1327b55d63b4cf833f45e

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03927017f4999580e89faf89961c5149575ef1d66eee73589f33da4b3ec8ed83
MD5 c2acfc06f41fcd0d5b019952bd575a72
BLAKE2b-256 007eef77433b8e48b0db6e44ae9ed6fa84e4ea826c62f63f78b17048d97b906c

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.2.dev7-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.2.dev7-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d4ae7b8b52d4fe674677bba8b69e7899c2b796373b6250d83a3676131197108c
MD5 0a9cad6e2262b31d1ed27dd39fd112f7
BLAKE2b-256 bfe72b56a6fe9c4292c7232832293b33e2d39ca803bafad37e59e83840d977b6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page