Skip to main content

A Python toolkit for Histopathology Image Analysis

Project description

HistomicsTK is a Python package for the analysis of digital pathology images. It can function as a stand-alone library, or as a Digital Slide Archive plugin that allows users to invoke image analysis jobs through HistomicsUI. The functionality offered by HistomicsTK can be extended using slicer cli web which allows developers to integrate their image analysis algorithms into DSA for dissemination through HistomicsUI.

Whole-slide imaging captures the histologic details of tissues in large multiresolution images. Improvements in imaging technology, decreases in storage costs, and regulatory approval of digital pathology for primary diagnosis have resulted in an explosion of whole-slide imaging data. Digitization enables the application of computational image analysis and machine learning algorithms to characterize the contents of these images, and to understand the relationships between histology, clinical outcomes, and molecular data from genomic platforms. Compared to the related areas of radiology and genomics, open-source tools for the management, visualization, and analysis of digital pathology has lagged. To address this we have developed HistomicsTK in coordination with the Digital Slide Archive (DSA), a platform for managing and sharing digital pathology images in a centralized web-accessible server, and HistomicsUI, a specialized user interface for annotation and markup of whole-slide images and for running image analysis tools and for scalable visualizing of dense outputs from image analysis algorithms. HistomicsTK aims to serve the needs of both pathologists/biologists interested in using state-of-the-art algorithms to analyze their data, and algorithm researchers interested in developing new/improved algorithms and disseminate them for wider use by the community.

HistomicsTK can be used in two ways:

  • As a pure Python package: enables application of image analysis algorithms to data independent of the Digital Slide Archive (DSA). HistomicsTK provides a collection of fundamental algorithms for tasks such as color normalization, color deconvolution, nuclei segmentation, and feature extraction. Read more about these capabilities here: api-docs and examples for more information.

    Installation instructions on Linux:

    To install HistomicsTK using PyPI:

    $ python -m pip install histomicstk --find-links https://girder.github.io/large_image_wheels

    To install HistomicsTK from source:

    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"
    $ python -m pip install -e .

    HistomicsTK uses the large_image library to read content from whole-slide and microscopy image formats. Depending on your exact system, installing the necessary libraries to support these formats can be complex. There are some non-official prebuilt libraries available for Linux that can be included as part of the installation by specifying pip install histomicstk --find-links https://girder.github.io/large_image_wheels. Note that if you previously installed HistomicsTK or large_image without these, you may need to add --force-reinstall --no-cache-dir to the pip install command to force it to use the find-links option.

    The system version of various libraries are used if the --find-links option is not specified. You will need to use your package manager to install appropriate libraries (on Ubuntu, for instance, you’ll need libopenslide-dev and libtiff-dev).

    To install from source on Windows:

    1- Run the following:

    $ pip install large-image
    $ pip install cmake
    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"

    2- Run pip install libtiff

    3- Run pip install large-image-source-tiff to install typical tile sources. You may need other sources, which would require other libraries.

    4- Install Visual Studio 15 2017 Community Version

    5- Install C++ build tools. Under Tools > Get Tools and Features … > Desktop Development with C++, ensure that the first 8 boxes are checked.

    6- Run this:

    $ python -m pip install -e .
    $ pip install girder-client

    To install from source on OSX:

    Note: This needs to be confirmed and expanded by an OSX user. There are probably assumptions made about available libraries.

    Use homebrew to install libtiff and openslide or other libraries depending on your desired tile sources.

    Run:

    $ python -m pip install histomicstk large-image-source-tiff large-image-source-openslide
  • As a image-processing task library for HistomicsUI and the Digital Slide Archive: This allows end users to apply containerized analysis modules/pipelines over the web. See the Digital Slide Archive for installation instructions.

Refer to our website for more information.

Previous Versions

The HistomicsTK repository used to contain almost all of the Digital Slide Archive and HistomicsUI, and now container primarily code for image analysis algorithms and processing of annotation data. The deployment and installation code and instructions for DSA have moved to the Digital Slide Archive repository. The user interface and annotation functionality has moved to the HistomicsUI repository.

The deployment and UI code will eventually be removed from the master branch of this repository; any new development on those topics should be done in those locations.

Funding

This work is funded by the NIH grant U24-CA194362-01.

See Also

DSA/HistomicsTK project website: Demos | Success stories

Source repositories: Digital Slide Archive | HistomicsUI | large_image | slicer_cli_web

Discussion: GitHub Discussion | Discourse forum

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

histomicstk-1.3.3.tar.gz (207.4 kB view details)

Uploaded Source

Built Distributions

histomicstk-1.3.3-cp312-cp312-win_amd64.whl (551.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

histomicstk-1.3.3-cp312-cp312-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

histomicstk-1.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (632.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.3-cp312-cp312-macosx_11_0_arm64.whl (578.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

histomicstk-1.3.3-cp312-cp312-macosx_10_12_x86_64.whl (575.5 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

histomicstk-1.3.3-cp311-cp311-win_amd64.whl (550.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

histomicstk-1.3.3-cp311-cp311-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

histomicstk-1.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (643.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.3-cp311-cp311-macosx_11_0_arm64.whl (576.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

histomicstk-1.3.3-cp311-cp311-macosx_10_12_x86_64.whl (571.4 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

histomicstk-1.3.3-cp310-cp310-win_amd64.whl (550.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

histomicstk-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

histomicstk-1.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (644.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.3-cp310-cp310-macosx_11_0_arm64.whl (576.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

histomicstk-1.3.3-cp310-cp310-macosx_10_12_x86_64.whl (572.5 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

histomicstk-1.3.3-cp39-cp39-win_amd64.whl (552.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

histomicstk-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

histomicstk-1.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (645.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.3-cp39-cp39-macosx_11_0_arm64.whl (578.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

histomicstk-1.3.3-cp39-cp39-macosx_10_12_x86_64.whl (574.2 kB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

histomicstk-1.3.3-cp38-cp38-win_amd64.whl (552.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

histomicstk-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

histomicstk-1.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (647.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.3-cp38-cp38-macosx_11_0_arm64.whl (576.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

histomicstk-1.3.3-cp38-cp38-macosx_10_12_x86_64.whl (572.6 kB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file histomicstk-1.3.3.tar.gz.

File metadata

  • Download URL: histomicstk-1.3.3.tar.gz
  • Upload date:
  • Size: 207.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for histomicstk-1.3.3.tar.gz
Algorithm Hash digest
SHA256 26e5f24883896a4f3a747ff71b61256bfd2268c169343b704263802f8d0e420e
MD5 3079a9ee5462af2ea03ddfde51f96ddc
BLAKE2b-256 56cae55adcdd11b7ada9c96bda8c6d892bda42553793bc30eac9838fb27bf4b7

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 fcc567a011dd5d25204705c1a7a05c83cde524a35bbfd5b757ba0cf1a62eaa97
MD5 5de00c4bce7eb3ca2eb6dea773440934
BLAKE2b-256 f1f49ab950d5276a3293c9c2ef86b9021c42755d7ae21063c8d574f974935202

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7440440f5b32b42ea832809b085183a54935456d347497c4e731bef5a8dd8d25
MD5 93c66bf6a892dbd90cbc4af975ad875d
BLAKE2b-256 c974e50230106127b0d8033fc72ee13c1ec3adcc943244c01227ebf0f23f61b9

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d05a6fbc96f6347e33bb5634e72e38ebbbf89210e4431c02996369d7d2efaa7
MD5 06d72433ee71388e33e086b71bc40f6c
BLAKE2b-256 f80f29d2e8c173049eec325187db177eeaaa185249a13301727b6c4480b15d83

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03475b71b7bee38b1748c98ff3a3de3b46c45ace168b1c6211fc8706ea9d7ad2
MD5 f7864e4d767fc545d23096c1d643cbb7
BLAKE2b-256 3010e5561b100569a6543ab7d0559ad706ea52bb57ac9cb85660cdf46b241ba6

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 26d58f6ae91569dfb58d2eeb227115dc2f69a4984c1e2501d348d1c028678ad2
MD5 58314872d72e580bdc4f4cf649560eb4
BLAKE2b-256 228c024c606a937361a73b26738b3ecd630b6f3f5180e2d0319482651debc34a

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 75fcada3ef21635747a9569de81ff6b51394123bad0a0e4d2013006a6654ed46
MD5 1611b53bdaf62a6f59d9f394016c6617
BLAKE2b-256 f680701a00e490d10ccd8ad3c96f6d54a31468abc2536aa9669a1701ea79a3f7

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6e43c227cda3e4a34405aa5aa20a8e8711b08a5eb40a4d24c7a1e7a2e30e9e0f
MD5 a11aaf3ae10d15755c5b2af88f7fef30
BLAKE2b-256 e5729dec7f4e9c726b4ee07cc98e0e8040bee7ddd490b5ff03496e4e1c51ea7f

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fdd31f601810276dd05c51e1d218673ef84aac33507e7a3d4eaf50e571c0e16e
MD5 91bf91d5b947258fc76cc3c65cfc2d1b
BLAKE2b-256 448049a9c58a3412ad5a6545843f3bb9cf3a7e4e44472b7d380291574f902fbc

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 813bf9fb4d934e4a7cf12d957e08f3357093ad7a0abaa89709ed7bcbf842c36f
MD5 5748c62291d79569d263e543fb2afc9d
BLAKE2b-256 fb53708c9a2c63c36bacc6867775ac4146deda379aa55dd2a7cf9407b3edee39

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 74cb8f7986d3dcbcc0852d806fb82f6e4720991e222ed030bde69d63320816d1
MD5 d95585f5304a71a7140ddd6545d0d467
BLAKE2b-256 a8573cb03668f5eed44a2ce20f8948cf98bd83e119fb398a8fa55de7244a660b

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ed23743cf5c5f18c841b16dd421687ad65da5674f62660cd24736fddaaf0e4e7
MD5 87423aaea61136329b633fb9e128ce2f
BLAKE2b-256 ef51838228917458429c15d827f56efb6f14c9a3b5bc9c44a5404b84b50f961c

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ab0a1d03c139f601495a9e2ba797d1f7a29bc16ee8a69ae5d4d541d62981bef5
MD5 d125a0772d67aa85a457728e34c8c921
BLAKE2b-256 ca65faff737101383de26f63dff87443659774e5e9970177e4c1711a59b0eea5

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae2bb2713b7019a386cd921b066b9b2e041d681cf435c6d4acdab7c8d6582285
MD5 5bde0c48ba8745e5f44b47cbc2c16234
BLAKE2b-256 0d0bd10ed668e76452b7c328e035e01f341ea02a48c216070acfd10650eb09e7

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d84820cea5bee3c3ded491ac82cdde39d2a6eb532ab1fdab5500760c828283c0
MD5 a7e1081148ceb12c7c78363c06ff63ee
BLAKE2b-256 c5693214cfd2fcdeaea5c9d6e0711e130f401502e098fbfe5ef139cb5adf2d16

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 11b69ef3028af2be03acd08151daafef55b9ed391118dfc8ef54ae5103b2f324
MD5 34e0267a1a1fb491bee9815bcb1ffd12
BLAKE2b-256 9181be7d76dc821bf785a57bff96faaffaa48db7a205f9a906b67cf992145101

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d166682e31e3430610fd0ad54c22bb9b1b0c3c06327475884bd2e40d50ca94eb
MD5 39d17a6edc55fcbd936367f2aa2c67df
BLAKE2b-256 5697517d6e3fd2657c809ddf2349da16e4d1b829e571a75dff57de655d99d098

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fbabcb0a18b6be763a8251b734506345b2d13139ca2e5a5d3d151eab3a85bae7
MD5 1a201d924504c6e217ed588d52dc9de6
BLAKE2b-256 f638cdb771601ce9e93bfc7e19cc1a080cba63d8ce9196f854ec2d0cd2161359

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e108ec8e2d3714cb2570050b5e2b82ec856a145af38272eb0aa9bb87c1c7c7f
MD5 bb13c21628a2059006d2d0c3bd15714f
BLAKE2b-256 70c01cd34438c949256f5e34bedcf5e616123495ee3456b503af0cd6ded39882

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d3e554b82ad7c5ab0a13c615801ae5b4e71de269b6293e948ced404c17d87013
MD5 197f6f257b66944b67b246e6000a76c2
BLAKE2b-256 7d4cc93ffd6c23cd8a1dba340ecd643c1ca169ce950953f8bfd67ff27901966b

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 37c2803437808b340c147d1965d58f5f7d6acb14206eb3abaa7237192df7baa9
MD5 2e41c59291a33265c220c8b5a54118d1
BLAKE2b-256 efb08a4469d371f1fc7170d140d1018bb5494a3aa8c3f1a5f473b485fb1afc5b

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d3dfa1216512d4f70cd612b9ebc4e6d379736d754dcb24e2ef2b9894e0f402ec
MD5 0a8c38ee3579bbd1bc1991f8e6f8440c
BLAKE2b-256 70593a0aa90292e1b3a27e9856adda134327a937d14512795b5e3fd646b7050c

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1674f6f0da9f1a4320609244055d365cd072be585dfbf72f2d4ac817e10f827b
MD5 22ec0dc1d851509283934289c164822c
BLAKE2b-256 1058ede0a1b0589f35b7efe25c2a88c2b7dad3f2abc727b7a10eb4e3fd88f0c0

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46802c158db794e8e6bf1261f62bccf2294d27a438c350cf239236f7622ab012
MD5 d0d4aa808be1819295baa70ede87437f
BLAKE2b-256 3aab9b49c87ef3fa47954e7a902cf723c44b7f92a6379750156b4cc4d066f015

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9c131aa5976816fa44784f22e070ee6aef5600f058cee1cba7eaa75857654dcb
MD5 71941c7551b7f13f25e25a827948df36
BLAKE2b-256 da41c2d87c5fdccfa5ef474efbd4f6a82da040e316a3c4b35071d913433e67de

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.3-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.3-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 de469359848c0932f07e7e9ea36d0f1b462c992bd32a49faee1824a30cb3f8c0
MD5 9077a278fbd950f78637a27e6aabc5b8
BLAKE2b-256 785ac870042c05d4420721c85084b06a66a26270e39f171996778f5a80f4bfa3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page