Skip to main content

A Python toolkit for Histopathology Image Analysis

Project description

HistomicsTK is a Python package for the analysis of digital pathology images. It can function as a stand-alone library, or as a Digital Slide Archive plugin that allows users to invoke image analysis jobs through HistomicsUI. The functionality offered by HistomicsTK can be extended using slicer cli web which allows developers to integrate their image analysis algorithms into DSA for dissemination through HistomicsUI.

Whole-slide imaging captures the histologic details of tissues in large multiresolution images. Improvements in imaging technology, decreases in storage costs, and regulatory approval of digital pathology for primary diagnosis have resulted in an explosion of whole-slide imaging data. Digitization enables the application of computational image analysis and machine learning algorithms to characterize the contents of these images, and to understand the relationships between histology, clinical outcomes, and molecular data from genomic platforms. Compared to the related areas of radiology and genomics, open-source tools for the management, visualization, and analysis of digital pathology has lagged. To address this we have developed HistomicsTK in coordination with the Digital Slide Archive (DSA), a platform for managing and sharing digital pathology images in a centralized web-accessible server, and HistomicsUI, a specialized user interface for annotation and markup of whole-slide images and for running image analysis tools and for scalable visualizing of dense outputs from image analysis algorithms. HistomicsTK aims to serve the needs of both pathologists/biologists interested in using state-of-the-art algorithms to analyze their data, and algorithm researchers interested in developing new/improved algorithms and disseminate them for wider use by the community.

HistomicsTK can be used in two ways:

  • As a pure Python package: enables application of image analysis algorithms to data independent of the Digital Slide Archive (DSA). HistomicsTK provides a collection of fundamental algorithms for tasks such as color normalization, color deconvolution, nuclei segmentation, and feature extraction. Read more about these capabilities here: api-docs and examples for more information.

    Installation instructions on Linux:

    To install HistomicsTK using PyPI:

    $ python -m pip install histomicstk --find-links https://girder.github.io/large_image_wheels

    To install HistomicsTK from source:

    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"
    $ python -m pip install -e .

    HistomicsTK uses the large_image library to read content from whole-slide and microscopy image formats. Depending on your exact system, installing the necessary libraries to support these formats can be complex. There are some non-official prebuilt libraries available for Linux that can be included as part of the installation by specifying pip install histomicstk --find-links https://girder.github.io/large_image_wheels. Note that if you previously installed HistomicsTK or large_image without these, you may need to add --force-reinstall --no-cache-dir to the pip install command to force it to use the find-links option.

    The system version of various libraries are used if the --find-links option is not specified. You will need to use your package manager to install appropriate libraries (on Ubuntu, for instance, you’ll need libopenslide-dev and libtiff-dev).

    To install from source on Windows:

    1- Run the following:

    $ pip install large-image
    $ pip install cmake
    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"

    2- Run pip install libtiff

    3- Run pip install large-image-source-tiff to install typical tile sources. You may need other sources, which would require other libraries.

    4- Install Visual Studio 15 2017 Community Version

    5- Install C++ build tools. Under Tools > Get Tools and Features … > Desktop Development with C++, ensure that the first 8 boxes are checked.

    6- Run this:

    $ python -m pip install -e .
    $ pip install girder-client

    To install from source on OSX:

    Note: This needs to be confirmed and expanded by an OSX user. There are probably assumptions made about available libraries.

    Use homebrew to install libtiff and openslide or other libraries depending on your desired tile sources.

    Run:

    $ python -m pip install histomicstk large-image-source-tiff large-image-source-openslide
  • As a image-processing task library for HistomicsUI and the Digital Slide Archive: This allows end users to apply containerized analysis modules/pipelines over the web. See the Digital Slide Archive for installation instructions.

Refer to our website for more information.

Previous Versions

The HistomicsTK repository used to contain almost all of the Digital Slide Archive and HistomicsUI, and now container primarily code for image analysis algorithms and processing of annotation data. The deployment and installation code and instructions for DSA have moved to the Digital Slide Archive repository. The user interface and annotation functionality has moved to the HistomicsUI repository.

The deployment and UI code will eventually be removed from the master branch of this repository; any new development on those topics should be done in those locations.

Funding

This work is funded by the NIH grant U24-CA194362-01.

See Also

DSA/HistomicsTK project website: Demos | Success stories

Source repositories: Digital Slide Archive | HistomicsUI | large_image | slicer_cli_web

Discussion: GitHub Discussion | Discourse forum

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

histomicstk-1.3.5.dev1.tar.gz (207.7 kB view details)

Uploaded Source

Built Distributions

histomicstk-1.3.5.dev1-cp312-cp312-win_amd64.whl (552.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

histomicstk-1.3.5.dev1-cp312-cp312-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

histomicstk-1.3.5.dev1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (633.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.5.dev1-cp312-cp312-macosx_11_0_arm64.whl (580.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

histomicstk-1.3.5.dev1-cp312-cp312-macosx_10_12_x86_64.whl (576.6 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

histomicstk-1.3.5.dev1-cp311-cp311-win_amd64.whl (551.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

histomicstk-1.3.5.dev1-cp311-cp311-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

histomicstk-1.3.5.dev1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (643.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.5.dev1-cp311-cp311-macosx_11_0_arm64.whl (577.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

histomicstk-1.3.5.dev1-cp311-cp311-macosx_10_12_x86_64.whl (572.4 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

histomicstk-1.3.5.dev1-cp310-cp310-win_amd64.whl (551.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

histomicstk-1.3.5.dev1-cp310-cp310-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

histomicstk-1.3.5.dev1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (645.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.5.dev1-cp310-cp310-macosx_11_0_arm64.whl (578.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

histomicstk-1.3.5.dev1-cp310-cp310-macosx_10_12_x86_64.whl (573.6 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

histomicstk-1.3.5.dev1-cp39-cp39-win_amd64.whl (552.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

histomicstk-1.3.5.dev1-cp39-cp39-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

histomicstk-1.3.5.dev1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (646.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.5.dev1-cp39-cp39-macosx_11_0_arm64.whl (580.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

histomicstk-1.3.5.dev1-cp39-cp39-macosx_10_12_x86_64.whl (575.3 kB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

histomicstk-1.3.5.dev1-cp38-cp38-win_amd64.whl (553.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

histomicstk-1.3.5.dev1-cp38-cp38-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

histomicstk-1.3.5.dev1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (648.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.5.dev1-cp38-cp38-macosx_11_0_arm64.whl (578.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

histomicstk-1.3.5.dev1-cp38-cp38-macosx_10_12_x86_64.whl (573.7 kB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file histomicstk-1.3.5.dev1.tar.gz.

File metadata

  • Download URL: histomicstk-1.3.5.dev1.tar.gz
  • Upload date:
  • Size: 207.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for histomicstk-1.3.5.dev1.tar.gz
Algorithm Hash digest
SHA256 4ea769efbf34c23f33615a58c0e082b1ff6a1cb42a928ac6da69e94e38f5846b
MD5 7a285d2a6ec3eae064ae5731af64242b
BLAKE2b-256 ec6a64c2dcc1a6025a039a142ab63dbea3c10798e0d3ac3c366f3018fa657f7a

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f44e37aa1b2bb9a5f85b52d78fa30dbc91ba57ace463ec59414d192243d9ec41
MD5 17243d33ac0f2d90fa825b8d756e0ca2
BLAKE2b-256 6eeea5b44d405c933b6f1820f5a96fcea8048245d9bbe07f048c890631da8658

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 98a8821e8d009d4d04edd9a2c5f11143378ae6c713db2aafb88f6df40956aa46
MD5 cd1964e6065dc657bc41c713e3936bf0
BLAKE2b-256 f6fd783833da9c9aa878264cb33a1ba566367145d07c91a64223bb0734c68fc7

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bae0845829cf13d62af6d5d49a76a0f4531a849e7ca8f37b4271d744382cfdce
MD5 c9f671f6d0d4d633405b84ab51deab56
BLAKE2b-256 017e9088906f3ddda6865bc139a9c7a50c05f1c8e2d2d9e17d9717116f47e289

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 831aa1213505c6649ebb550e013db7615c959b19b141eab4b5eed56ec22b8426
MD5 cb532ef89b26f749e2897c513bffdbe5
BLAKE2b-256 f24e600b82bab6cf2fe6f8a4027411e2114e1dad1b7aa3c3185ee57c14821826

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 fb9d1df8bbe14b8a120f4398d5eb6e742128bd575d93ad8d4002a18f2d649acd
MD5 aa67e39c0bc4c68008d9816158b45392
BLAKE2b-256 e493b4c4601f6110274c613417958c704fb909fbdedaec7d13b40fcd79937449

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 af200489606eeef590a34cbad7cd72269b46cdbf75c94a543267af7753b28a71
MD5 a553e2a08e09aea957a083c4981bb575
BLAKE2b-256 35fcdb66ffe1923bce17532ed4fe24815467abe84761ab9f9a74e343ba1298ed

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 183b01232338b7a1afecd57a023fab335f97f04fc2c45fbdb08b657cfb805cc3
MD5 db896fdcb054101aa750f27675602648
BLAKE2b-256 64a354bbefacf327d02ac0a664ffef877297e65c7cd0baa43715185246bef770

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6586618eaf56d755f998d9eb4a302dd761153ce3bccc15226cfdfdc93a70e62b
MD5 899eb846e1a559031108033eef9947b2
BLAKE2b-256 b126d1b5211f8217ddb33b1f86c0453df8a5fbff0f0f049aadad3ca490fa1e81

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b9bff3bca8c72efca9e8bcbf2313a404376133325f35bb2bdd4efe12ff6c902
MD5 8d870a8f846843073a1fab04894104d8
BLAKE2b-256 74e946714e037830491dbddaa269fbbd29f63ccb15e09d81c9d46983309cb5d7

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b05320183a69d30b3de18f7b3f7d612c614d230d905fe6a5e69c4f9dce7e28a4
MD5 48f2361232a391ee54de256e2d895a5a
BLAKE2b-256 bf5bb5f8029cbe36c015eb5392e9e0b967c99791057e198f2ce6480d54ec9dff

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 851ce89cc6ca2a375a034f5ff77fde7fb06337e1fff84237e2544177a66c46d6
MD5 e44813ad5be0cedd08f300157bd2c32b
BLAKE2b-256 1bc424273b9dd74467efb9551601edad5e1dc48fef08a292ee5cac3f049ca12c

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a824a430ed8694b2375405e59f55457192788b3158610ce4934acad7a1eaf1af
MD5 6a531fafa766f26afc44510192220669
BLAKE2b-256 d1874db837e67d631ae8aa23884b472cd0e5f06eb6d6f2e99604a205fe36c703

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 acc7ee2cb8c4655d7f1a94ab9e50668136d60c139ae56f0704637174d1518759
MD5 95776e0dce5a87521249551bbbb64d0a
BLAKE2b-256 1b865170c50bb256ea5b6e3bbfc51287ebe4768ca7c15e6bad7609fde6bc37dc

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 57ba95ea6a0afcbcd85aeb145b3701447bd524f3a36aad0d7e7fea6524222eca
MD5 472981bb4bf850a56e809083320f0cad
BLAKE2b-256 460ee58460d0895cfbdfd0a10c137c4ac5b5ceb94bfcbf11ed650b3fb8eadb4c

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e8b97fccd21cdc3a8fd9e083c8372155f47dbd84d7bd7e8995e8af7af3bf1cd3
MD5 25d73e831a33ca251b7cd32bf3afa9fd
BLAKE2b-256 66761b208866fe87d560a63bfff5b5f555ec8608a1a3f6080685a225912d7ac9

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 985be0a5a4ae7812ba67b79cc9adaa0abbfe471b66f025a064d7772ff62ec376
MD5 40bdfb159b3cc330fe013fc20b334331
BLAKE2b-256 27236368c43576e127efb97eb105a3c4869858dbe6ca4e9ce6fe35bd18ab854e

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 64e2c01bbba02ea561ab3f0fe3d2d2aaea866a130fa8fcaab06c5c6e1441dec4
MD5 456d5341f8d6cc121fa87949ccff7c7b
BLAKE2b-256 e68341edc320f4e36a9e4b7757d786f4b9e56176174b2aac889676f406823945

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e73f085159145bcddfb3bc58ec404eedcac6e097aed5a2ea34e6cae775c1dde
MD5 3a624bbdc41b240b3755a901ded036ef
BLAKE2b-256 8f805ad66ed2d10af17f23fb96bdc8042d80f6bd91cdc863749fc6ab1085cd37

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e4bd072ff917b19845f1ef35fcbf3a84864a5ed53c30a03243bf2cf512055a26
MD5 4e3e086c0f61511194dcb35e723a7368
BLAKE2b-256 9a1ce5c2bfd1a4c15f79fea0378e87aaeadafc700aff047789284f592a36f991

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a88967955860784d9f9bf0a2ec1d0a8a5f8069f49893c71054212efc77a01560
MD5 445317abb332d6ba26ba172616edcf90
BLAKE2b-256 b46b0790eb58ec8f96d93a441f25eda9a990369c0089a64a6f0274a6a77c4574

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 050827fcd6249a4dd15f2404e9bfa86d185b0c1a37d19b8359a9905da52fcb09
MD5 ce0287278466c955019d11be65004268
BLAKE2b-256 d5043b7e6ee4566045606faadcd9eeaec9139c1943a61736da78f6ce20cb16ab

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1f1bd129c7905142ef5ce5a4f5ea1c516272e253e56f2eef0969ff23314b84f2
MD5 f8ac347bfcd43d11c5444d06333cdec9
BLAKE2b-256 3b0e15a435a266dd52186cfcf4e7c8af782e645a398d324dd4cbba703b5e7b3e

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c224e5551cc0aa7bb98965199bfef8e6aaa8532b056d6f263d510a56032afb3
MD5 53c3569604eff040349b120f7686e5c9
BLAKE2b-256 d358ff47dbaac27331c608cf6b3a977271ed278900531283ebb2b9b872675b6c

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 27dd6700d3bbc5c11399b3c617c553eb2b53caca57233e53f8fcce2ade3cab8c
MD5 a14843ad798cb8582da192ffbb1eb460
BLAKE2b-256 38667ce216f9fdc49844a8fa4f24e25f7986f31c0bdf05d3a52a880f03e5104a

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.5.dev1-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.5.dev1-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5a279628dfd14f3d680a9cb6c9612fe309d8d01528a2e0791c51d7a1beffc756
MD5 ebfbb9b660482febc2f16cad668ecf4c
BLAKE2b-256 65fc22323fdc6254a1c3694e07273f7568aceee5ed8561faf302764674161691

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page