Skip to main content

A Python toolkit for Histopathology Image Analysis

Project description

HistomicsTK is a Python package for the analysis of digital pathology images. It can function as a stand-alone library, or as a Digital Slide Archive plugin that allows users to invoke image analysis jobs through HistomicsUI. The functionality offered by HistomicsTK can be extended using slicer cli web which allows developers to integrate their image analysis algorithms into DSA for dissemination through HistomicsUI.

Whole-slide imaging captures the histologic details of tissues in large multiresolution images. Improvements in imaging technology, decreases in storage costs, and regulatory approval of digital pathology for primary diagnosis have resulted in an explosion of whole-slide imaging data. Digitization enables the application of computational image analysis and machine learning algorithms to characterize the contents of these images, and to understand the relationships between histology, clinical outcomes, and molecular data from genomic platforms. Compared to the related areas of radiology and genomics, open-source tools for the management, visualization, and analysis of digital pathology has lagged. To address this we have developed HistomicsTK in coordination with the Digital Slide Archive (DSA), a platform for managing and sharing digital pathology images in a centralized web-accessible server, and HistomicsUI, a specialized user interface for annotation and markup of whole-slide images and for running image analysis tools and for scalable visualizing of dense outputs from image analysis algorithms. HistomicsTK aims to serve the needs of both pathologists/biologists interested in using state-of-the-art algorithms to analyze their data, and algorithm researchers interested in developing new/improved algorithms and disseminate them for wider use by the community.

HistomicsTK can be used in two ways:

  • As a pure Python package: enables application of image analysis algorithms to data independent of the Digital Slide Archive (DSA). HistomicsTK provides a collection of fundamental algorithms for tasks such as color normalization, color deconvolution, nuclei segmentation, and feature extraction. Read more about these capabilities here: api-docs and examples for more information.

    Installation instructions on Linux:

    To install HistomicsTK using PyPI:

    $ python -m pip install histomicstk --find-links https://girder.github.io/large_image_wheels

    To install HistomicsTK from source:

    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"
    $ python -m pip install -e .

    HistomicsTK uses the large_image library to read content from whole-slide and microscopy image formats. Depending on your exact system, installing the necessary libraries to support these formats can be complex. There are some non-official prebuilt libraries available for Linux that can be included as part of the installation by specifying pip install histomicstk --find-links https://girder.github.io/large_image_wheels. Note that if you previously installed HistomicsTK or large_image without these, you may need to add --force-reinstall --no-cache-dir to the pip install command to force it to use the find-links option.

    The system version of various libraries are used if the --find-links option is not specified. You will need to use your package manager to install appropriate libraries (on Ubuntu, for instance, you’ll need libopenslide-dev and libtiff-dev).

    To install from source on Windows:

    1- Run the following:

    $ pip install large-image
    $ pip install cmake
    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"

    2- Run pip install libtiff

    3- Run pip install large-image-source-tiff to install typical tile sources. You may need other sources, which would require other libraries.

    4- Install Visual Studio 15 2017 Community Version

    5- Install C++ build tools. Under Tools > Get Tools and Features … > Desktop Development with C++, ensure that the first 8 boxes are checked.

    6- Run this:

    $ python -m pip install -e .
    $ pip install girder-client

    To install from source on OSX:

    Note: This needs to be confirmed and expanded by an OSX user. There are probably assumptions made about available libraries.

    Use homebrew to install libtiff and openslide or other libraries depending on your desired tile sources.

    Run:

    $ python -m pip install histomicstk large-image-source-tiff large-image-source-openslide
  • As a image-processing task library for HistomicsUI and the Digital Slide Archive: This allows end users to apply containerized analysis modules/pipelines over the web. See the Digital Slide Archive for installation instructions.

Refer to our website for more information.

Previous Versions

The HistomicsTK repository used to contain almost all of the Digital Slide Archive and HistomicsUI, and now container primarily code for image analysis algorithms and processing of annotation data. The deployment and installation code and instructions for DSA have moved to the Digital Slide Archive repository. The user interface and annotation functionality has moved to the HistomicsUI repository.

The deployment and UI code will eventually be removed from the master branch of this repository; any new development on those topics should be done in those locations.

Funding

This work is funded by the NIH grant U24-CA194362-01.

See Also

DSA/HistomicsTK project website: Demos | Success stories

Source repositories: Digital Slide Archive | HistomicsUI | large_image | slicer_cli_web

Discussion: GitHub Discussion | Discourse forum

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

histomicstk-1.3.6.dev2.tar.gz (207.7 kB view details)

Uploaded Source

Built Distributions

histomicstk-1.3.6.dev2-cp312-cp312-win_amd64.whl (552.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

histomicstk-1.3.6.dev2-cp312-cp312-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

histomicstk-1.3.6.dev2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (633.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.6.dev2-cp312-cp312-macosx_11_0_arm64.whl (580.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

histomicstk-1.3.6.dev2-cp312-cp312-macosx_10_12_x86_64.whl (576.6 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

histomicstk-1.3.6.dev2-cp311-cp311-win_amd64.whl (551.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

histomicstk-1.3.6.dev2-cp311-cp311-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

histomicstk-1.3.6.dev2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (643.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.6.dev2-cp311-cp311-macosx_11_0_arm64.whl (577.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

histomicstk-1.3.6.dev2-cp311-cp311-macosx_10_12_x86_64.whl (572.4 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

histomicstk-1.3.6.dev2-cp310-cp310-win_amd64.whl (551.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

histomicstk-1.3.6.dev2-cp310-cp310-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

histomicstk-1.3.6.dev2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (645.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.6.dev2-cp310-cp310-macosx_11_0_arm64.whl (578.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

histomicstk-1.3.6.dev2-cp310-cp310-macosx_10_12_x86_64.whl (573.6 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

histomicstk-1.3.6.dev2-cp39-cp39-win_amd64.whl (552.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

histomicstk-1.3.6.dev2-cp39-cp39-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

histomicstk-1.3.6.dev2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (646.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.6.dev2-cp39-cp39-macosx_11_0_arm64.whl (580.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

histomicstk-1.3.6.dev2-cp39-cp39-macosx_10_12_x86_64.whl (575.3 kB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

histomicstk-1.3.6.dev2-cp38-cp38-win_amd64.whl (553.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

histomicstk-1.3.6.dev2-cp38-cp38-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

histomicstk-1.3.6.dev2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (648.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.6.dev2-cp38-cp38-macosx_11_0_arm64.whl (578.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

histomicstk-1.3.6.dev2-cp38-cp38-macosx_10_12_x86_64.whl (573.7 kB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file histomicstk-1.3.6.dev2.tar.gz.

File metadata

  • Download URL: histomicstk-1.3.6.dev2.tar.gz
  • Upload date:
  • Size: 207.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for histomicstk-1.3.6.dev2.tar.gz
Algorithm Hash digest
SHA256 1d94bea18b553a13e69a5f303d3054c641f1f78fddec52f9c006e44391924175
MD5 8c309e38e03e97992835309be9a286c3
BLAKE2b-256 ebe6c216317a9cbcb3006abb17045862e43fa0aeab36111c3eb713f7667deae3

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 78c54d3ca25ca6cbf42bed0a7e3000ab9fcf2b820e9843818f7f67296e597d76
MD5 79489669cc9bd05a5b19bab158fef68d
BLAKE2b-256 901e6e1ac4243939c3f3f4086524791fb00957c8959d1472b61967218c46d18e

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0b76732a80951861cc75dd6e538205ab2289642760ecda5fe971d81f64c528ef
MD5 55762f81b46c3e12b2eaed177d980c2b
BLAKE2b-256 67a00595cfd99ffcd7df814893ebf2ed1c318d198e6cb95faf7e358485257d63

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1226ea099cc9e232468a6adc2394b234c8fb2d735b6589dd6f5d4f0a38b19c09
MD5 ce4be71bc26e2213bb553536914b1ff6
BLAKE2b-256 6a841b2bc69460822b571802eb977d07c05cfabe4e7683396326004055d0dacf

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8c1fae87fb2584e70c3a40f815f373b19481540b6816988738bc816e90f1ae7d
MD5 d75cefc79488cd34167fbeea1f37c31f
BLAKE2b-256 714d07abcfe65378ea4b52ff79b84b10754c24852db1b13c3dc73f52ccb8111c

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 fffcde5a2a731f556c82b51a7261edf86e602c29718c5f8c38d1a3d90f9c2e08
MD5 857a33831cc4ba57172b6ba528fd114c
BLAKE2b-256 ef3f49e04ad2f97f3268275637ac4e0436b2f19057e97ffacc53f52c0dcd5437

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 15ad15f737a6c242ec8a884dd269dc49b08a47c98a7c0132890705ce8743d220
MD5 a7a1753e19ebe229304c903080854737
BLAKE2b-256 06770c29ef01d72fc4c0525fb07e056bd21ee1dfc1201ed25fce29a6212ca19e

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 00d32a5103fabf94f963ff44d5cd55fe1561e60a962d3c60138c002089745ec1
MD5 098b9c977641d80e8806d016c0436cb9
BLAKE2b-256 2f9e3978b0def28ae3ed693073304d521e012302bfc16767779d5a0f2a9e58f3

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 094782ebb352cbcfadb49232c0959c6e636c0b4031649301cfe5190740815449
MD5 1c3596fe9c0c8b07e2f9cdf7c15de79e
BLAKE2b-256 d331305c3391c1df701e5c2bc0079ccfcf2037789459116ec4bf2a0cc987e95a

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 097e3417f7a165f1884ab7de59ad2b7853396903b46079abdef2ef793c0cba4e
MD5 05843111c0dc490b8d47cb6a24f4d8d5
BLAKE2b-256 11cd98a1a33d6c2d100df961de93793f276f07f2a2fa85a9809f29631a79321d

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b045373fe0a3c06030f7d1261897beeda24c5b9ce586910dff562e0df2a00d44
MD5 b164e9973a577abe49c79199548bcdec
BLAKE2b-256 f37c947474c53919896e321902a220fe2545e75603b304ede8c20a5e062b65f9

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fc5b12c9711c57c31f9e898ed3a3c59df225a618150039e0b5d1dc0b8d8c72f6
MD5 2c766096f84258075f6e63731088bf05
BLAKE2b-256 79ab7261077b0b0562ad7de251bd7054d3a244f8e8d9f53109339318493b5683

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 655b3a0ad845c79a02eeacada33b4b19cdef85d20ab29c3f550e22d2dd7afb86
MD5 569a29685f4b50e8c451e99fee3258f3
BLAKE2b-256 8d14df8dca9a37592f2aaaf4d478a42164c78ca001dcf19ca995bcb132617e84

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f4eadea91aac57209ff0515f117ebcf2393e1ab13e64c0ca56eb98f7ea58b70
MD5 340daccd39e6d4f643683b5e1a445002
BLAKE2b-256 f78f54feeb557abee56f254cb33d00ea0bcee08424d8b7d538909cdec5277924

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d80c1e6fcc1cad4d563aee04e6009a3aaec5ca909a67bcee4c31b06d948b0ef
MD5 5e5c4270529300c6d814aa61f8c76e1e
BLAKE2b-256 febac694feedb76e1e5b1510cefe890b754dd55d82f5c682d132de91a7952d76

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 66377d7dce025d0f9cce3ee759e7a0d29b4b7452722dfa1c1ba9700e8517405f
MD5 5ae951ca59f615756f0d0ad884b60ace
BLAKE2b-256 5fbf16669a8d9c72c6dd4212b56f1a3a006e4aefcf8733f4d4402bab8bf1cbd5

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c6069b5f86a179f169b0a55dbdee47c814f03967a3332aa925c857d294ca1146
MD5 b474a0a470ed2f5131bc18b17e394693
BLAKE2b-256 32179bb2e2f10b36a8672f3e0b396148eae93b72cc35532e77f4f3ad39efb646

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 29c146cabb630ae64466b28298521b22195b46b61b6746f27920b1b0341f16af
MD5 60d463fb3980a8076fae9921893d8fe5
BLAKE2b-256 2a9f69f4b1ba2d201643ee4201f5e85535a2df8126aeb67929ace7ad57cf54da

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d71aa055b529884c40ce9e30a7b208ca55a98f4f91b60c9548b1db7c5125124
MD5 96c741fdec9f4981a81820217ccb35e2
BLAKE2b-256 9a01d6c833089c57af5088e54b25edd752ec79433a1fc58e189e67db05acee47

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5c6295d10c4d0bfccb64ac87a1548d1c4269e35a934d0bfe73ea92622b3ce50
MD5 fa5c7033244c9ae11c4177d0a574737a
BLAKE2b-256 76e345f19ea9ecfad920a026a5841948b4f806ecf9f65e143b6cbf338725a9d9

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 58aa8aaf2aa116134bf44cd80294381bc544c630269b00c533ab236667d4b6d4
MD5 ac5a362ade9049b3e212b21b1922d5c7
BLAKE2b-256 017ac05a1382d032a9223e6ff33807d36b271c7a87cb02a889e0a68faa23b7a2

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 63ac90cd68344a0769a9588aa4a9e2846399f52ec66e5be7af79ef486de6822c
MD5 3ae8053e2b8d7ea6ed9dd0625aae4b77
BLAKE2b-256 aba73937516d35d697334899f026ffcaaf3ef976db834691e605bcba286dbb05

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 06b4e12f667fe5bbd31aaf899069f0fd24750cbb0de949259dff3dfebe27bfce
MD5 377b608f7f7d6cfa2756e622788ba9a4
BLAKE2b-256 af0a727e7bfc0f35da0435e62d199d7fb8c9f6eb9fefc098a73b92bfd66294a4

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8277ef3e28665a99b9b50d2309fb5d46ae0fc18cf79f52a978d81352140f492f
MD5 8444698c96c50c203dd9f0cc4f2814fd
BLAKE2b-256 778e138b5d6a325f7f96ea823742b4e77191f6e28ce280da00e3ad1d78898300

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a8e41dba96ae7f1326ac1dcb65698423b4919199e0caa54fe871a89f778ea220
MD5 2de5ed92550bb105a9a507dd0862675e
BLAKE2b-256 559d371378de5e1ab08bedf7167d6b25f5ef6b038c5ae6959b4499635654b3f6

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.6.dev2-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.6.dev2-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 89116e578260b49cabdf92de8da7e92b224640b0de3e8c5267d75ae96bc79fa3
MD5 53730f7a4c26cd33ca68a6f12eaa00a9
BLAKE2b-256 ca41139e317d39b7d13d4e9f8f4ff52e8b42e805922c473a50337bbed02d93c3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page