Skip to main content

A Python toolkit for Histopathology Image Analysis

Project description

HistomicsTK is a Python package for the analysis of digital pathology images. It can function as a stand-alone library, or as a Digital Slide Archive plugin that allows users to invoke image analysis jobs through HistomicsUI. The functionality offered by HistomicsTK can be extended using slicer cli web which allows developers to integrate their image analysis algorithms into DSA for dissemination through HistomicsUI.

Whole-slide imaging captures the histologic details of tissues in large multiresolution images. Improvements in imaging technology, decreases in storage costs, and regulatory approval of digital pathology for primary diagnosis have resulted in an explosion of whole-slide imaging data. Digitization enables the application of computational image analysis and machine learning algorithms to characterize the contents of these images, and to understand the relationships between histology, clinical outcomes, and molecular data from genomic platforms. Compared to the related areas of radiology and genomics, open-source tools for the management, visualization, and analysis of digital pathology has lagged. To address this we have developed HistomicsTK in coordination with the Digital Slide Archive (DSA), a platform for managing and sharing digital pathology images in a centralized web-accessible server, and HistomicsUI, a specialized user interface for annotation and markup of whole-slide images and for running image analysis tools and for scalable visualizing of dense outputs from image analysis algorithms. HistomicsTK aims to serve the needs of both pathologists/biologists interested in using state-of-the-art algorithms to analyze their data, and algorithm researchers interested in developing new/improved algorithms and disseminate them for wider use by the community.

HistomicsTK can be used in two ways:

  • As a pure Python package: enables application of image analysis algorithms to data independent of the Digital Slide Archive (DSA). HistomicsTK provides a collection of fundamental algorithms for tasks such as color normalization, color deconvolution, nuclei segmentation, and feature extraction. Read more about these capabilities here: api-docs and examples for more information.

    Installation instructions on Linux:

    To install HistomicsTK using PyPI:

    $ python -m pip install histomicstk --find-links https://girder.github.io/large_image_wheels

    To install HistomicsTK from source:

    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"
    $ python -m pip install -e .

    HistomicsTK uses the large_image library to read content from whole-slide and microscopy image formats. Depending on your exact system, installing the necessary libraries to support these formats can be complex. There are some non-official prebuilt libraries available for Linux that can be included as part of the installation by specifying pip install histomicstk --find-links https://girder.github.io/large_image_wheels. Note that if you previously installed HistomicsTK or large_image without these, you may need to add --force-reinstall --no-cache-dir to the pip install command to force it to use the find-links option.

    The system version of various libraries are used if the --find-links option is not specified. You will need to use your package manager to install appropriate libraries (on Ubuntu, for instance, you’ll need libopenslide-dev and libtiff-dev).

    To install from source on Windows:

    1- Run the following:

    $ pip install large-image
    $ pip install cmake
    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"

    2- Run pip install libtiff

    3- Run pip install large-image-source-tiff to install typical tile sources. You may need other sources, which would require other libraries.

    4- Install Visual Studio 15 2017 Community Version

    5- Install C++ build tools. Under Tools > Get Tools and Features … > Desktop Development with C++, ensure that the first 8 boxes are checked.

    6- Run this:

    $ python -m pip install -e .
    $ pip install girder-client

    To install from source on OSX:

    Note: This needs to be confirmed and expanded by an OSX user. There are probably assumptions made about available libraries.

    Use homebrew to install libtiff and openslide or other libraries depending on your desired tile sources.

    Run:

    $ python -m pip install histomicstk large-image-source-tiff large-image-source-openslide
  • As a image-processing task library for HistomicsUI and the Digital Slide Archive: This allows end users to apply containerized analysis modules/pipelines over the web. See the Digital Slide Archive for installation instructions.

Refer to our website for more information.

Previous Versions

The HistomicsTK repository used to contain almost all of the Digital Slide Archive and HistomicsUI, and now container primarily code for image analysis algorithms and processing of annotation data. The deployment and installation code and instructions for DSA have moved to the Digital Slide Archive repository. The user interface and annotation functionality has moved to the HistomicsUI repository.

The deployment and UI code will eventually be removed from the master branch of this repository; any new development on those topics should be done in those locations.

Funding

This work is funded by the NIH grant U24-CA194362-01.

See Also

DSA/HistomicsTK project website: Demos | Success stories

Source repositories: Digital Slide Archive | HistomicsUI | large_image | slicer_cli_web

Discussion: GitHub Discussion | Discourse forum

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

histomicstk-1.3.8.dev1.tar.gz (207.7 kB view details)

Uploaded Source

Built Distributions

histomicstk-1.3.8.dev1-cp312-cp312-win_amd64.whl (552.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

histomicstk-1.3.8.dev1-cp312-cp312-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

histomicstk-1.3.8.dev1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (633.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.8.dev1-cp312-cp312-macosx_11_0_arm64.whl (577.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

histomicstk-1.3.8.dev1-cp312-cp312-macosx_10_12_x86_64.whl (572.8 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

histomicstk-1.3.8.dev1-cp311-cp311-win_amd64.whl (551.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

histomicstk-1.3.8.dev1-cp311-cp311-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

histomicstk-1.3.8.dev1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (643.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.8.dev1-cp311-cp311-macosx_11_0_arm64.whl (574.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

histomicstk-1.3.8.dev1-cp311-cp311-macosx_10_12_x86_64.whl (569.0 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

histomicstk-1.3.8.dev1-cp310-cp310-win_amd64.whl (551.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

histomicstk-1.3.8.dev1-cp310-cp310-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

histomicstk-1.3.8.dev1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (645.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.8.dev1-cp310-cp310-macosx_11_0_arm64.whl (574.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

histomicstk-1.3.8.dev1-cp310-cp310-macosx_10_12_x86_64.whl (569.1 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

histomicstk-1.3.8.dev1-cp39-cp39-win_amd64.whl (552.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

histomicstk-1.3.8.dev1-cp39-cp39-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

histomicstk-1.3.8.dev1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (646.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.8.dev1-cp39-cp39-macosx_11_0_arm64.whl (576.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

histomicstk-1.3.8.dev1-cp39-cp39-macosx_10_12_x86_64.whl (570.6 kB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

histomicstk-1.3.8.dev1-cp38-cp38-win_amd64.whl (553.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

histomicstk-1.3.8.dev1-cp38-cp38-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

histomicstk-1.3.8.dev1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (648.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.8.dev1-cp38-cp38-macosx_11_0_arm64.whl (576.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

histomicstk-1.3.8.dev1-cp38-cp38-macosx_10_12_x86_64.whl (569.9 kB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file histomicstk-1.3.8.dev1.tar.gz.

File metadata

  • Download URL: histomicstk-1.3.8.dev1.tar.gz
  • Upload date:
  • Size: 207.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for histomicstk-1.3.8.dev1.tar.gz
Algorithm Hash digest
SHA256 5e2fe4b6b0e422c7afaac994a3407990140cf939afc92b99cb2c284f71128599
MD5 576d571f2b224600db06cf593207e889
BLAKE2b-256 87f46d7bc44914dbefc36e3e2d730fdeb6c5c9eefe28af83ed7adc2dc93c2985

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 48c2f1afd411bc1b98c55fef1fe0ab5ff64d5ea4740376060d13820f5440686a
MD5 86c303977b1a769332faf6ba7a72d91c
BLAKE2b-256 0ab3e24137a71cea0e64274bbdac9dca6cb28b5afa5d5822292f73a5e491497c

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9ff9e6086331b1dfd32bd1f863984177b5118d013d0f318f87ddcdf368003df0
MD5 57ebc4f15cc27986f178fb8f9f10700a
BLAKE2b-256 be3bcfc5c59cfd8b34dda6a7459991a929a9af3032a4f6505686e62dfe083fe7

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c166c6069bdde0b39393ddf533ae90dc1fc7b51a7dd4a01ef8b1f4e446e7c492
MD5 b3b553c02342cefaa5fefb450ead7bb0
BLAKE2b-256 bfd3ef4b049ba6312d371cca6b403ed4cdfa7086232af73cbac40b9bcdea27c9

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b9256ad3b15429f2ff618c97d7100fed611845c998e6ae7f5a031707ff2efee
MD5 b2b36a03c65f7baed4d7c79c0b789af5
BLAKE2b-256 fe6eeabd28eb91099d1ad509d01383296b3f253cc51a173e0121062572835b4f

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 7cac02038a9c2442efcefb60b9ca5402a3e11bd9c736bdf3ffc54ae940ac7a94
MD5 428673dbdcafe646736a831d09290107
BLAKE2b-256 3f8f228601455ed048a5615c9022221921de920db978065f87f8d371d4a43af5

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2aeed1c59ce60b120dce61708c596ab252e4d54225e223eabcd03776502cd809
MD5 6ba5c7ac1ca139834716e24cb8bf686a
BLAKE2b-256 f0a7849c2c2096e37b8e2ec6c5c33de87dffd295479b93333e3828d598fbe717

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ab21d5e5eeb13aa7d93ee7f34c79d716f9e4f9219c7203bbec63d72fa290d1a5
MD5 bc9fff12a1ce1a6df6168427e443837e
BLAKE2b-256 19ad31b9ec95566e932bed4e7c0ea777694574a2b8ca0f409db0885d7f0041d1

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c2f4b03de1c6c73fffbcee4af4252a8073fb3170ec47f827f5457b4dc40b57e
MD5 cfd2c8a01a0ed5462f74dd2977a9dfc7
BLAKE2b-256 6d7cdc606afb1367306ed71992d9154dad8068caa7779be1f85571c6def29463

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2d982c73ed1c80982d4b0762d0f15f25044b346af53bf2c31188e3e223d0c5aa
MD5 114ec7cdc8ac67eacffcb11f0fe9854a
BLAKE2b-256 a270e64cc7742bc9e0f266bcada7a9991510a3b9fe9bcb7604fcb613a41ab7e8

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 96ff333eda482a413a2827d8a64885de5d6400e657d265ee12b6e46055177524
MD5 92f3b7af62045f179e3448dd85995b05
BLAKE2b-256 ed0e54583ecc595d7f8d5b074e49a9bb55fcf917c2b9d612aa3957a45ee7365e

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9ff63e41be8752a8a6493d14d4257ce2537bebebabcbf5e2371a89619920e85f
MD5 3a5fc501a1cd4151d3e02cbe3a9a8a9c
BLAKE2b-256 2e5c9519c1bdfbc5f8a9e26c9d8d92c401a6da78ea77b3aa7f6483ec74f09efc

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 92ccf35128aad08ef53852c708166d52bd08c8097807465cebb732264e7543ba
MD5 6bf96aafe0a0015b174ddf3d0357827e
BLAKE2b-256 f2a008910581b0d9227c2b379569ee234690ffd9b81cde3a0963424c82c53d5a

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47a8e53f1d938ee2dc1b06462937e79dcdb0192b8485609e3451153ede375a54
MD5 4bd0681a5af2dbea02eae5f8910f87fb
BLAKE2b-256 457dba803dbf69a931360a428edd888312cd6c9b9da2eb129cc119503655eef3

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5604ac4cc956d54fa624d266b13a53b05bed2f6216177dc8d6a0566541761b65
MD5 eb84069c8f9585160be15b4b1698d0ae
BLAKE2b-256 f950473cdda97eb75c49356f30b4762cc965a441c0e348deac4de3c04721497e

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 177a7d2e93c2207e798428f94d642c07f7cd91e3f774a93d5daaf750bf7bc5b7
MD5 2e47c3224a98581d5cb9d281d13242a3
BLAKE2b-256 76bfe7ff71c39c6e044fb25d5943cf8f9611cba5ba48b75072338b3e2517d7c5

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0d43a1872db15997b1c0cc5b54258b93deaa994bc7442de69ba5e4d7f4179c1a
MD5 ed3aace683f4085a1b05a45d84ea5e1e
BLAKE2b-256 05aad16455a34fdb6391014b0890606b085e29f1250e0aa29af62c5072e17052

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 dae9e99d7a39e53ea4b29c493d0a0a8df7be17cb77ae813308eb6d6e0f48a233
MD5 3c25e0325270129efc44a85e820d8819
BLAKE2b-256 bf497dfb2e8dca2d73cf8d88e1d7e74deb4fd53ae459d37fef7ac447bba20fd9

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 814e5a86cd493b5c1e733450126d0d61121a30011d92bd787b06ff99129261b6
MD5 92ff17e4f211bd5b4d2168a214d4e29d
BLAKE2b-256 1b4863ed656f2849b7e99e084cb3cd75e914da38639eb07c7c4081b54de4693c

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 83803a9452b15d1ec3ee3401d87f695266e83e4ee76ee970508015b457bdb651
MD5 8133e038c2bba8801dd8884fd01615dc
BLAKE2b-256 2236e710fa43ee72d36a76d354a9c6e8f21ff45143c76c47af8a098ebbb8a063

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e69fe2eac651e6ed7a1e747ac56e56c0119e899bb2e49c9c8a899064f75ddbd2
MD5 e96a1b4159422756bc9fb3be51d31b4c
BLAKE2b-256 c0b04def32d3c1244823500a2e2203154a6a1303c77e1cac769ea1bd1a4f3212

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b72d07b0d27bf50ab659541262b5d35324f551cb16db8aa13e72baf39d90e9d1
MD5 66e0908968be0853810d45c1258e1335
BLAKE2b-256 aa63f41d33808ca6b1cd47c0522df79ae781cd962bdba7249c00d5f934930c3b

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f0a25c1e3899addb7dbcd2f0950bd7033840bf29e32b8a76cc8a5c124b802df6
MD5 e445e3309bd23e059d67aa6a0067058f
BLAKE2b-256 78f2656ca8ddbde87441d1641546e3a3bfbcc807cbd1f471751244004dd5d12d

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed560e272b1a9e38e8dd48e336c7ff44a88d7dfd21a41c5f7a6fa682af967162
MD5 65d5537cf9c27318deeac13adda83eed
BLAKE2b-256 00066be4e66de7189b464a9af820c0030acac4c20ef0accfe7206676fe8b186a

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f825efdaa6a124fe5ad0c10fe5985ea5a1de75d7e45b87cc8380d3c588c7a03d
MD5 46d46a8485a6ed26b54f9cc564f5c5d4
BLAKE2b-256 efc42f20cf26b73fdf65bda585d0b69fd3ab9b44fede3686103483c94bfa4db1

See more details on using hashes here.

Provenance

File details

Details for the file histomicstk-1.3.8.dev1-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.8.dev1-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 dda6a4930244e0560c63653ec4585350d7e9ab3ae81cbfcf70dbb547dcfa3af0
MD5 60adbb6e06e633616b2dd7c0c4144422
BLAKE2b-256 84779454ca89e370767c6a3293ab1ff1513efd7421a174feda17f459232485d1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page