No project description provided
Project description
hmmlearn
hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and similar models see seqlearn.
Note: This package is under limited-maintenance mode. Moreover, if you are able to help with testing on macOS, please have a look at https://github.com/hmmlearn/hmmlearn/issues/370; your help will be greatly appreciated.
Important links
Official source code repo: https://github.com/hmmlearn/hmmlearn
HTML documentation (stable release): https://hmmlearn.readthedocs.org/en/stable
HTML documentation (development version): https://hmmlearn.readthedocs.org/en/latest
Dependencies
The required dependencies to use hmmlearn are
Python >= 3.5
NumPy >= 1.10
scikit-learn >= 0.16
You also need Matplotlib >= 1.1.1 to run the examples and pytest >= 2.6.0 to run the tests.
Installation
Requires a C compiler and Python headers.
To install from PyPI:
pip install --upgrade --user hmmlearn
To install from the repo:
pip install --user git+https://github.com/hmmlearn/hmmlearn
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for hmmlearn-0.2.3-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1da9480b4a993c960fc81bf969f9222ed320ec7e1ac535dc28e817d7df52edf |
|
MD5 | 8787754b26cb39f374ccf1ee023761d9 |
|
BLAKE2b-256 | b02160a358d26e247eea143985f0838c612c8665a53d11da9c62758b57d5e1de |
Hashes for hmmlearn-0.2.3-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b49445dc349a4514efba7d6ac30e2091fbdfe9d55679146afe322c925990da0 |
|
MD5 | d82d0846d544d57c3f5a4a386e8f4dd2 |
|
BLAKE2b-256 | b96eab9b129f8493cbc469421bbb5ac6b237eef72be427a901ed22da95a308b0 |
Hashes for hmmlearn-0.2.3-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5db0f96f3d38714ce296884a27491866ec7cf21790c0aa11c2e1a1e47cd02b55 |
|
MD5 | 04d914fb2086b9e4f575b6f503da71f4 |
|
BLAKE2b-256 | 424a5f31d618dca6aecb8dd24f365288fa2cbbefcde0ace07fb667b64ef7053c |
Hashes for hmmlearn-0.2.3-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc7e340d97bb86bbef2ff780a3342da53891154464d1dae2314f7cb3557a6129 |
|
MD5 | 317da51d9a8740e8cf2124872b1f54c7 |
|
BLAKE2b-256 | e7f8443412c9b6b4e33bf33cfb387bb03496bbe85fc87c9d4dced86e9ae40a6d |
Hashes for hmmlearn-0.2.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 089ee0c85be6077c2b0c4ffb66fa6b3e953ef888c92ae650d02c013668eba8e0 |
|
MD5 | e342bf852e343ec45eb49579ad69a0b4 |
|
BLAKE2b-256 | 01828a34d6cc9329c34a7cc25e5d521fe2dfa156c21c8a6d5a1450b082ecbaec |
Hashes for hmmlearn-0.2.3-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f297fe0fb3812c6352ab96c60ff80d9ae8f6f105ea3d7c69b811eeaddbc915a |
|
MD5 | 4d57943a825d5a05038060ca0c383cec |
|
BLAKE2b-256 | 782a5779da77ce1e42f51eba288983ebb711610d834bd87490e6ce1e71e136dd |
Hashes for hmmlearn-0.2.3-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 31f3c0b909bfcacb44fb6d931d1df1d4082747b8884bdca7d542cca644c2a986 |
|
MD5 | 7893457c9ca2609f31a44eec0c15b9c9 |
|
BLAKE2b-256 | 15ea70aa36f3ef4adb54fac0c5c5efed9d778d2b253e18f523788d2fc8044429 |
Hashes for hmmlearn-0.2.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 976b8e883d85b55a33842d971bc4c0c135a4a55773ef230b13292b8129f3975c |
|
MD5 | d9cc685dd8dd91551c8e80cc6b5bc5b1 |
|
BLAKE2b-256 | ff7b33f629a443a0671161c019e55c3f1b511c7e9fdce5ab8c8c3c33470eb939 |
Hashes for hmmlearn-0.2.3-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fbbe6a478067dc657bb6f70707b0f4c6134feec5924caa71e3fd3324cfdb7b84 |
|
MD5 | 6cb219a1a202ee8afea5a200a837ad3c |
|
BLAKE2b-256 | 4c4d78c10df38ae558bbc68bdb5341fa0fdeecf3878019489ad780b755209e7f |
Hashes for hmmlearn-0.2.3-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d626e4c0f370d192bc5a23b6c70cd956848994ddcaced2b2e1b3353a2debba87 |
|
MD5 | 4ca2fddf52ba0b57ca79e080cfd6bb0c |
|
BLAKE2b-256 | 8a09edc9e8446c0aee3ba97d5d6cf95642dd0ed8613c346d1b74f7614ab4ae7e |
Hashes for hmmlearn-0.2.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cea733d22aeb530625b4dc79a4ded2778e806fa1b52727150909b1489736ce36 |
|
MD5 | 556c7417442081713fe5c634e8823b95 |
|
BLAKE2b-256 | ca21b31abc92bae811f8ce8e18440c44b6b09701d6c82f772fc08ed3ed785c7e |
Hashes for hmmlearn-0.2.3-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4fad4b2abec6a946a9ce139cc9fe23fb4045edbd6b7a3af80b5dd1fcf487e68f |
|
MD5 | f84b103970ea5caef313d49d637bebf8 |
|
BLAKE2b-256 | 33cab7f24eede6e5f819de579e81e8c5be98e0d67ca7af0b09b1e482aa62d1f7 |