Hidden Markov Models in Python with scikit-learn like API
Project description
hmmlearn
hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and similar models see seqlearn.
Note: This package is under limited-maintenance mode.
Important links
Official source code repo: https://github.com/hmmlearn/hmmlearn
HTML documentation (stable release): https://hmmlearn.readthedocs.org/en/stable
HTML documentation (development version): https://hmmlearn.readthedocs.org/en/latest
Dependencies
The required dependencies to use hmmlearn are
Python >= 3.5
NumPy >= 1.10
scikit-learn >= 0.16
You also need Matplotlib >= 1.1.1 to run the examples and pytest >= 2.6.0 to run the tests.
Installation
Requires a C compiler and Python headers.
To install from PyPI:
pip install --upgrade --user hmmlearn
To install from the repo:
pip install --user git+https://github.com/hmmlearn/hmmlearn
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for hmmlearn-0.2.5-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | baa508987389311203744b748bb14201d3ebfa61a837238c23fa02eeabc5745c |
|
MD5 | 19bc8918d929d70f038c4f81b00dfb55 |
|
BLAKE2b-256 | d7467331f05b32e81ac95c71e15e8e01772659c94676ce48cad2e0d6583df0a6 |
Hashes for hmmlearn-0.2.5-cp39-cp39-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b96a662a93fe31c64e4f1662036c5cc237294b329721198a95ac4ce0a9742d63 |
|
MD5 | 60ff4dd975d0356a83dc6cd7986602a2 |
|
BLAKE2b-256 | adca2f472801dab84f14323e7ba5bcc72b3fd46d834f54eba2ed9ac79de54e48 |
Hashes for hmmlearn-0.2.5-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc594a9fca782dde3110c64c2941d1e76b1b1f7ffa50561496624bbc71d5b72e |
|
MD5 | b13f702655986c101d54900f5f8b6e5e |
|
BLAKE2b-256 | 4c5eb9188d567b63559f2be26b6e177ef448698e2b84e3b8c3b3ba04da29cca1 |
Hashes for hmmlearn-0.2.5-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4e03be5ba70e179a7777d1825b4cfed21683ea3a92938f1c2cc0fc46face62c6 |
|
MD5 | 2fdc4764994502d0d6b4ae2f3ec6e12f |
|
BLAKE2b-256 | 67a74c8472c22870ea56d4dfaefe35b4a2c8e12c5d9766ed75c9c503278619bd |
Hashes for hmmlearn-0.2.5-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 94936c340ab606ec84790b4d88adf4f5f02dc7d60e0f7f2dba9f2aa304a35140 |
|
MD5 | bc9353b5f1b4da182025d98d70ded447 |
|
BLAKE2b-256 | dcae52511081e10ac196a1ad8df4ac1e7d392be821734840b0f0733311a1be76 |
Hashes for hmmlearn-0.2.5-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a5b0025438c5b451fe1f9eff40f30feb99871fb67677052bbb24a9f2e8ce2a8 |
|
MD5 | 96c597e8ecab2d23c0d43284ba50c0c9 |
|
BLAKE2b-256 | 40eea13929e8b0c7399415204783fd5546089b7e9354ff8a96b6dc7f53b21a35 |
Hashes for hmmlearn-0.2.5-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 160665f63a66f276a72c1b7fbffb7e26e2ebfaf86aeab66a400e76177fb5af5a |
|
MD5 | 045d52e0f54968a8b129d64eb9ace876 |
|
BLAKE2b-256 | 8a6823308a3811cf7fdd58fbae63e6c9796626eb5fa22aac74ad96551ee66fd3 |
Hashes for hmmlearn-0.2.5-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0691bb9a716ef460ef0203819c4b9052648a384e6b86ef20a5d00d512987f6f |
|
MD5 | 30ec6271c88fa92b31ed5221da301e4c |
|
BLAKE2b-256 | 4b98a2829aeb942b7146034d497afb3fc738a78a4fbd4797a039c19a94bb31f7 |
Hashes for hmmlearn-0.2.5-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 91836caf33dee19ccc55fd2f44c880a1025f703759d448334d816e320d4cc146 |
|
MD5 | 12c8624b02cf5384ef5bbc5a422284db |
|
BLAKE2b-256 | 8f2cfbb25e4abb8b8b3bfc0600c64667472efffcef9c1b8595961e9c4b4b4bd9 |
Hashes for hmmlearn-0.2.5-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d4c1d3c7405256978edb35e39cb8fea8bd742a92364e8bb55e2f5d67e40268b |
|
MD5 | cb35490817db8b7297f3e03891b658ad |
|
BLAKE2b-256 | bfc69b6699d57a500e28246c94ed2002573cd5dffbeff04ece9c98aac9897390 |
Hashes for hmmlearn-0.2.5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7cef566e7867071b7f07c7ca7aadfed3b839651bdb5546fd53f892e4ab128a85 |
|
MD5 | 26bc75fa13de810ca5dbb6e44ec060ab |
|
BLAKE2b-256 | c60c58328490a296089cb9d2f19a479a8051b36707817fecc18519a90d7c5c41 |
Hashes for hmmlearn-0.2.5-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4c7e8213715fb635539fd7a0f5a0d0a5c69858380027155412d6b3dd5aaa100c |
|
MD5 | 238b9d5d3238ffc06117ba47120fbdbb |
|
BLAKE2b-256 | c23ce024a0f0bc013d269db67e015f179eb312dea8e42d4a31c325fdc8b089d2 |
Hashes for hmmlearn-0.2.5-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f443a0384a6e384fa17e0cd9ca91647bf4552dc01dc65b44520e76de7c0db454 |
|
MD5 | eb60f8b769188e506ab585caf032b951 |
|
BLAKE2b-256 | 666407788e465a7a5b2a61fb6cd14ca16539ae5e2185a9138637e9f0a93caffc |
Hashes for hmmlearn-0.2.5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74d012985a7a85d293fbbcf3405f7b97234f20c7540c342cf6a5e9e4ba3168ec |
|
MD5 | cd021c9360c64983f4038f752ca297c4 |
|
BLAKE2b-256 | d27b5aab180c4afe57673cb7e98c255c3ea7574d7f2e83f4a63a313160fa8ce6 |
Hashes for hmmlearn-0.2.5-cp35-cp35m-macosx_10_14_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f5c967e4c629c3fc11f0eee47bf687b35714a7ddc8fd0bb4eafe588ff54812c8 |
|
MD5 | e74fb5b0ca8eca7b8899f096f03a2cd8 |
|
BLAKE2b-256 | e8f394ef6e4d2903db365349bd69c9883828c58b07ea79b1303c273ef7c1cbd2 |