Hidden Markov Models in Python with scikit-learn like API
Project description
hmmlearn
hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and similar models see seqlearn.
Note: This package is under limited-maintenance mode.
Important links
Official source code repo: https://github.com/hmmlearn/hmmlearn
HTML documentation (stable release): https://hmmlearn.readthedocs.org/en/stable
HTML documentation (development version): https://hmmlearn.readthedocs.org/en/latest
Dependencies
The required dependencies to use hmmlearn are
Python >= 3.6
NumPy >= 1.10
scikit-learn >= 0.16
You also need Matplotlib >= 1.1.1 to run the examples and pytest >= 2.6.0 to run the tests.
Installation
Requires a C compiler and Python headers.
To install from PyPI:
pip install --upgrade --user hmmlearn
To install from the repo:
pip install --user git+https://github.com/hmmlearn/hmmlearn
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for hmmlearn-0.2.8-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | adb057e68e195416c04c1c2a875b84f32ac45a49f70f605f7bbdc4122b239dc8 |
|
MD5 | 454f3417a4e2dd3c5230049fb95923cb |
|
BLAKE2b-256 | 03fbc3415cebee40b788a15c2aa2021cf6c7515202344a026fd64d1d7314260d |
Hashes for hmmlearn-0.2.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 527f29556fc33f7f0bdd9ba3b070d5e5d8b7048eb5d8c490ece15c471696e6ee |
|
MD5 | 5e0b97d2388c3f1102ac99549209ef6c |
|
BLAKE2b-256 | 8881585485b222f8af74b380eb3fb19da1e66d3b0e86f64c1437f4c48c7d2d05 |
Hashes for hmmlearn-0.2.8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 72414eb50921ea3c7a15293fbb4fc93f6bf2d020834dc58350cad77500737ad4 |
|
MD5 | 099c3a944a2be77b9adc8d1a87945073 |
|
BLAKE2b-256 | c1d024b2ec0be7d8995ae0907ae9ca098a4818656b54de36cac0b4ffe165d10b |
Hashes for hmmlearn-0.2.8-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f28da60da96379d4320eb9c529187f1a1c0bcd9be437a5d1002528f6f994eb62 |
|
MD5 | ceb4256645a4a543a99cf77ebca0bcf0 |
|
BLAKE2b-256 | 774738a62054ad38cbbbd2f972f350ba1ad32633eaf2965afbedd1c33f6a44b0 |
Hashes for hmmlearn-0.2.8-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4cf3e6de054b2a7ec2d75946e5b1cd3c3485c0b60e9b7de81374b5b8703f2387 |
|
MD5 | edca44a7d42db298860484483c0d15b6 |
|
BLAKE2b-256 | 0604e441deabe38bf101d64532f6d7ab6239f7b6a4e6c4c544c7df89fe8fba5e |
Hashes for hmmlearn-0.2.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a9eb2cd5647cdb96085fe4108705dd0e34f9eab43fa3ac50079d25d8df87bd44 |
|
MD5 | dfe20e7d2874ff133f9e56fabd13d0ff |
|
BLAKE2b-256 | af910c04023a25c686c0e19a2154c3a05500cdff9ead073538ac95322f9c02ca |
Hashes for hmmlearn-0.2.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 127097d6be73880ac4b9cb6e4d11fd8ab3028827ea62a826647cbfe6de5955e6 |
|
MD5 | b44294407813a3d287226d99bec400cf |
|
BLAKE2b-256 | 95382266c7640473657c92e7f2694669a2feb43e7d63886d6b5756bbae8f91fa |
Hashes for hmmlearn-0.2.8-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dec1916bab77108c36cefa3ee5baca72ced6ba1f3673a52672046a63a2b0dba6 |
|
MD5 | 8658b657dd07a389981a76add518aa6d |
|
BLAKE2b-256 | dfd5439c658083ff71a294902aa75a1b5e133f9da7978e97adc85f08d11f69ce |
Hashes for hmmlearn-0.2.8-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63cb380ce707ab7bc22ebf76cb095b28224363a63ba4ccb6a61c3237005bea32 |
|
MD5 | 5ca3af48c872f67ff23bfd3052d3ea4a |
|
BLAKE2b-256 | e99062587cf50d7c9b50938d132b0cbb27b29a22229f6452f86063f1d28be65c |
Hashes for hmmlearn-0.2.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d7add09c9c30c221eea9eade492441c6d707177220dc8b1ee04e4ebe49f51c1b |
|
MD5 | d57b4e2297fb51f0446504cafaf02073 |
|
BLAKE2b-256 | ac47204626ada5e67e1a71b26cd4501b90e09c63882cbe2c16422dd1120cc013 |
Hashes for hmmlearn-0.2.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 93d16582ca8be996beb361791d3620ae9566904ff12dd556dc5f88a2158691cc |
|
MD5 | d050145a440b8ba964696572a230ec0c |
|
BLAKE2b-256 | 788d63fc9aa883f36d7e2f83015182f9e012b92bd13f1a37fac4e2d759ed65df |
Hashes for hmmlearn-0.2.8-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 40b29bbbf2ea8441d1ea1cb7b1cf04f1d0cf3d8b3486cfa1b57f9d98d4c38cbe |
|
MD5 | 1a8074a943e5748fc8be4f974f33676d |
|
BLAKE2b-256 | 232a222d83a4d76807c944014da76189d9b04e5ca58e27c89fba5b78f51eac57 |
Hashes for hmmlearn-0.2.8-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c9e154ffab6f9d70c37ac472a2ce5a798fc351af5d9410360f113200e4aa0d1 |
|
MD5 | 50edb82b9cd689ffe7f03ad0b493b48c |
|
BLAKE2b-256 | 1c6662eb1c25fff37f2b6e35fd3d89b2f14a315fcf5bbc839e27dfd9844a45a3 |
Hashes for hmmlearn-0.2.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c17461015640cc2ede69b75d6fd32cac39339d497ac21ef48e0e86125618af2 |
|
MD5 | 3f128cbc3dd20edccdbc0353514d6ed4 |
|
BLAKE2b-256 | 8bfcae86b8437287e36f82d949b32a41a9bf4e5f03566fd9d6833c90a8781a80 |
Hashes for hmmlearn-0.2.8-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30f427383689ae1e34983e41f8a0b59e210326b6ae23f15dffa20feba3c7eb21 |
|
MD5 | 91137b173be35e27316f74b5d8c00726 |
|
BLAKE2b-256 | 63748a7471296c7ea3416ecf303f757a27e3597585f9b162cc5b43c2e5d79e53 |
Hashes for hmmlearn-0.2.8-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | aa6849979c1ec53b5fe06bc1663de267ead3891f75cd3cc13a65b3520e29390c |
|
MD5 | d8ea7a12e78e49b00d566b5ab6640131 |
|
BLAKE2b-256 | 1d46d5d0b6511c5547ad4843fce9f644b24130990511f04027d856ee501828c9 |
Hashes for hmmlearn-0.2.8-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 78df606d307fabed92f8bcdf7f1cb2dc2e7ef1964f4613de977e662bd1895e33 |
|
MD5 | ce1540771332439f5469176bf6618e34 |
|
BLAKE2b-256 | df17b3eede3101c11a3b75c50c22eb0f1737dfa3cecf0c0c70ac1a6799ea2119 |
Hashes for hmmlearn-0.2.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a9fe549522dcebc46fefdc74d5d16feaf8224dd5816cf33fbbb9ae6185dc15df |
|
MD5 | 29be7dbddea8e85dc3a60af54348d4bf |
|
BLAKE2b-256 | 81e630084e02a477a1f0ed36d030470504c71175bb622a25ac60f5eb5c97ee0a |
Hashes for hmmlearn-0.2.8-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 44664483ad7c7433cf9995f393b405f7488741c42417ad1c5f9a6c6ab00e2340 |
|
MD5 | c06837504d07b66e9abbeb853e02ab2f |
|
BLAKE2b-256 | cbfa976821941351d9ef612a7bd226833271dfce280bb2d58a51b5e1777e7c4b |
Hashes for hmmlearn-0.2.8-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9a8a5e7ae10fe28e2d2afcbbe7caff92e04588ffd2054ddb4ed5ed35e51dd58a |
|
MD5 | 664e97297a5ac22527739dccae7a50f6 |
|
BLAKE2b-256 | b3f302fc587806b027331086b5d9677d7eb6da2793e5dd574b829bc64445303b |