Skip to main content

Stop plotting your data - annotate your data and let it visualize itself.

Project description

BuildStatus holoviewsDocs PyPI License Coveralls Downloads Gitter

holoviews

Stop plotting your data - annotate your data and let it visualize itself.

http://assets.holoviews.org/demo.gif

HoloViews requires Param and Numpy and is designed to work together with Matplotlib and IPython Notebook.

Clone holoviews directly from GitHub with:

git clone git://github.com/ioam/holoviews.git

Please visit our website for official releases, installation instructions, documentation, and examples.

For general discussion, we have a gitter channel. In addition we have a wiki page describing current work-in-progress and experimental features. If you find any bugs or have any feature suggestions please file a GitHub Issue or submit a pull request.

Features

Overview

Support for maintainable, reproducible research

  • Supports a truly reproducible workflow by minimizing the code needed for analysis and visualization.

  • Already used in a variety of research projects, from conception to final publication.

  • All HoloViews objects can be pickled and unpickled.

  • Provides comparison utilities for testing, so you know when your results have changed and why.

  • Core data structures only depend on the numpy and param libraries.

  • Provides export and archival facilities for keeping track of your work throughout the lifetime of a project.

Analysis and data access features

  • Allows you to annotate your data with dimensions, units, labels and data ranges.

  • Easily slice and access regions of your data, no matter how high the dimensionality.

  • Apply any suitable function to collapse your data or reduce dimensionality.

  • Helpful textual representation to inform you how every level of your data may be accessed.

  • Includes small library of common operations for any scientific or engineering data.

  • Highly extensible: add new operations to easily apply the data transformations you need.

Visualization features

  • Useful default settings make it easy to inspect data, with minimal code.

  • Powerful normalization system to make understanding your data across plots easy.

  • Build complex animations or interactive visualizations in seconds instead of hours or days.

  • Refine the visualization of your data interactively and incrementally.

  • Separation of concerns: all visualization settings are kept separate from your data objects.

  • Support for interactive tooltips/panning/zooming, via the optional mpld3 backend.

IPython Notebook support

  • Support for both IPython 2 and 3.

  • Automatic tab-completion everywhere.

  • Exportable sliders and scrubber widgets.

  • Automatic display of animated formats in the notebook or for export, including gif, webm, and mp4.

  • Useful IPython magics for configuring global display options and for customizing objects.

  • Automatic archival and export of notebooks, including extracting figures as SVG, generating a static HTML copy of your results for reference, and storing your optional metadata like version control information.

Integration with third-party libraries

  • Flexible interface to both the pandas and Seaborn libraries

  • Immediately visualize pandas data as any HoloViews object.

  • Seamlessly combine and animate your Seaborn plots in HoloViews rich, compositional data-structures.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

holoviews-1.5.0.zip (1.3 MB view details)

Uploaded Source

File details

Details for the file holoviews-1.5.0.zip.

File metadata

  • Download URL: holoviews-1.5.0.zip
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for holoviews-1.5.0.zip
Algorithm Hash digest
SHA256 76d43ce032561ba845d928d12437ed447b084e955fd87d32be6aae2d64aac87c
MD5 531209948c44dfe92869a9422ba9a7d4
BLAKE2b-256 9f335bbab856083a39da38c8e3a9da0306c1a2f765fd4a37f2cb1eaf3c810948

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page