Skip to main content

Accurate host read removal

Project description

Tests PyPI version Bioconda version Install with bioconda Install with Docker DOI:10.1101/2023.07.04.547735

Hostile

Hostile removes host sequences from short and long reads, consuming paired or unpaired fastq[.gz] input. Batteries are included – a human reference genome is downloaded when run for the first time. For maximum retention of microbial reads, an existing masked reference genome can be downloaded, or a new one created for target organisms. When used with a masked reference genome, Hostile achieves near-perfect retention of microbial reads while removing >99.6% of human reads. Read headers can be replaced with integers (using --rename) for privacy and smaller FASTQs. Heavy lifting is done with fast existing tools (Minimap2/Bowtie2 and Samtools). Bowtie2 is the default aligner for short (paired) reads while Minimap2 is default aligner for long reads. Benchmarks and further info can be found in the BioRxiv preprint (please cite if useful!). Feel free open an issue, tweet or toot me to report problems or suggest improvements.

Reference genomes

The default human-t2t-hla reference is downloaded when running Hostile for the first time. This can be overriden by specifying a custom --index. Bowtie2 indexes need to be untarred before use. The databases human-t2t-hla and human-t2t-hla-argos985-mycob140 were compared in the paper.

Name Composition Genome (Minimap2) Bowtie2 index Date
human-t2t-hla (default) T2T-CHM13v2.0 + IPD-IMGT/HLA v3.51 human-t2t-hla.fa.gz human-t2t-hla.tar 2023-07
human-t2t-hla-argos985 T2T-CHM13v2.0 & IPD-IMGT/HLA v3.51; masked with 985 FDA-ARGOS 150mers human-t2t-hla-argos985.fa.gz human-t2t-hla-argos985.tar 2023-07
human-t2t-hla-argos985-mycob140 T2T-CHM13v2.0 & IPD-IMGT/HLA v3.51; masked with 985 FDA-ARGOS & 140 mycobacterial 150mers human-t2t-hla-argos985-mycob140.fa.gz human-t2t-hla-argos985-mycob140.tar 2023-07

Install

Installation with conda/mamba or Docker is recommended due to non-Python dependencies (Bowtie2, Minimap2, Samtools and Bedtools). Hostile is tested with Ubuntu Linux 22.04, MacOS 12, and under WSL for Windows.

Conda/mamba

conda create -n hostile -c conda-forge -c bioconda hostile  # Mamba/Micromamba are faster
conda activate hostile

Docker

BioContainers are built for each version

docker run quay.io/biocontainers/hostile:0.0.3--pyhdfd78af_0

Python/pip

Manually install Bowtie2, Minimap2, Samtools and Bedtools

pip install hostile  # Requires python >= 3.10

Development install

git clone https://github.com/bede/hostile.git
cd hostile
conda env create -f environment.yml  # Mamba/Micromamba are faster
conda activate hostile
pip install --editable '.[dev]'
pytest

Command line usage

$ hostile clean --help
usage: hostile clean [-h] --fastq1 FASTQ1 [--fastq2 FASTQ2] [--aligner {bowtie2,minimap2,auto}] [--index INDEX] [--rename] [--out-dir OUT_DIR] [--threads THREADS] [--force] [--debug]

Remove host reads from paired fastq(.gz) files

options:
  -h, --help            show this help message and exit
  --fastq1 FASTQ1       path to forward fastq(.gz) file
  --fastq2 FASTQ2       optional path to reverse fastq(.gz) file
                        (default: None)
  --aligner {bowtie2,minimap2,auto}
                        alignment algorithm
                        (default: auto)
  --index INDEX         path to custom genome or index. For Bowtie2, provide an index path without the .bt2 extension
                        (default: None)
  --rename              replace read names with incrementing integers
                        (default: False)
  --out-dir OUT_DIR     path to output directory
                        (default: ./)
  --threads THREADS     number of CPU threads to use
                        (default: 10)
  --force               overwrite existing output files
                        (default: False)
  --debug               show debug messages
                        (default: False)

Short reads

$ hostile clean --fastq1 reads.r1.fastq.gz --fastq2 reads.r2.fastq.gz
INFO: Using Bowtie2
INFO: Found cached index (/Users/bede/Library/Application Support/hostile/human-t2t-hla)
INFO: Cleaning…
[
    {
        "aligner": "bowtie2",
        "index": "/path/to/data/dir/human-t2t-hla",
        "fastq1_in_name": "reads.r1.fastq.gz",
        "fastq2_in_name": "reads.r2.fastq.gz",
        "fastq1_in_path": "/path/to/hostile/reads.r1.fastq.gz",
        "fastq2_in_path": "/path/to/hostile/reads.r2.fastq.gz",
        "fastq1_out_name": "reads.r1.clean_1.fastq.gz",
        "fastq2_out_name": "reads.r2.clean_2.fastq.gz",
        "fastq1_out_path": "/path/to/hostile/reads.r1.clean_1.fastq.gz",
        "fastq2_out_path": "/path/to/hostile/reads.r2.clean_2.fastq.gz",
        "reads_in": 20,
        "reads_out": 20,
        "reads_removed": 0,
        "reads_removed_proportion": 0.0
    }
]
$ hostile clean --rename --fastq1 reads_1.fastq.gz --fastq2 reads_2.fastq.gz \
  --index /path/to/human-t2t-hla-argos985-mycob140 > decontamination-log.json
INFO: Using Bowtie2
INFO: Found cached index (/Users/bede/Library/Application Support/hostile/human-t2t-hla)
INFO: Cleaning…

Long reads

$ hostile clean --fastq1 tests/data/h37rv_10.r1.fastq.gz
INFO: Using Minimap2's long read preset (map-ont)
INFO: Found cached reference (/Users/bede/Library/Application Support/hostile/human-t2t-hla.fa.gz)
INFO: Cleaning…
[
    {
        "aligner": "minimap2",
        "index": "/Users/bede/Library/Application Support/hostile/human-t2t-hla.fa.gz",
        "fastq1_in_name": "reads.fastq.gz",
        "fastq1_in_path": "/path/to/hostile/reads.fastq.gz",
        "fastq1_out_name": "reads.clean.fastq.gz",
        "fastq1_out_path": "/path/to/hostile/reads.clean.fastq.gz",
        "reads_in": 10,
        "reads_out": 10,
        "reads_removed": 0,
        "reads_removed_proportion": 0.0
    }
]

Python usage

from pathlib import Path
from hostile.lib import clean_paired_fastqs, ALIGNER

# Long reads, defaults
clean_fastqs(
    fastqs=[Path("reads.fastq.gz")],
)

# Paired short reads, all the options, capture log
log = lib.clean_paired_fastqs(
    fastqs=[(Path("reads_1.fastq.gz"), Path("reads_2.fastq.gz"))],
    aligner=ALIGNER.minimap2,
    index=Path("reference.fasta.gz"),
    out_dir=Path("decontaminated-reads"),
    force=True,
    threads=4
)

print(log)

Masking reference genomes

The mask subcommand makes it easy to create custom-masked reference genomes and achieve maximum retention of specific target organisms:

hostile mask human.fasta lots-of-bacterial-genomes.fasta --threads 8

You may wish to use one of the existing reference genomes as a starting point. Masking uses Minimap2's asm10 preset to align the supplied target genomes with the reference genome, and bedtools to mask out all aligned regions. For Bowtie2—the default aligner for decontaminating short reads—you will also need to build an index before you can use your masked genome with Hostile.

bowtie2-build masked.fasta masked-index
hostile clean --index masked-index --fastq1 reads_1.fastq.gz --fastq2 reads_2.fastq.gz

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hostile-0.1.0.tar.gz (455.1 kB view details)

Uploaded Source

Built Distribution

hostile-0.1.0-py3-none-any.whl (12.7 kB view details)

Uploaded Python 3

File details

Details for the file hostile-0.1.0.tar.gz.

File metadata

  • Download URL: hostile-0.1.0.tar.gz
  • Upload date:
  • Size: 455.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for hostile-0.1.0.tar.gz
Algorithm Hash digest
SHA256 8fe1471c9aca5143a78162bb846b099a73071a74d37c133377a7eeba45494354
MD5 dd0c3d273b4ea4323afa69837a299460
BLAKE2b-256 51bf34dfafea8e9498339809f0a60b955b73b4f769e44c629d77319160d1e9b4

See more details on using hashes here.

File details

Details for the file hostile-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: hostile-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 12.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for hostile-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8e8172dee21da45fdd71a3e2a1666b0e92ef0433410f09401a9c6beca712dc7e
MD5 e54fe817a507c176ec71f3a715bcf841
BLAKE2b-256 6e3d81d828e3a625b1e78ef8306dda65ad3100757281876f3b10358881365cbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page