Computing Hermite normal form and Smith normal form.
Project description
hsnf
Computing Hermite normal form and Smith normal form with transformation matrices.
- Document: https://lan496.github.io/hsnf
- Document(develop): https://lan496.github.io/hsnf/develop
- Github: https://github.com/lan496/hsnf
- PyPI: https://pypi-hypernode.com/project/hsnf
Usage
import numpy as np
from hsnf import column_style_hermite_normal_form, row_style_hermite_normal_form, smith_normal_form
# Integer matrix to be decomposed
M = np.array(
[
[-6, 111, -36, 6],
[5, -672, 210, 74],
[0, -255, 81, 24],
]
)
# Smith normal form
D, L, R = smith_normal_form(M)
"""
D = array([
[ 1 0 0 0]
[ 0 3 0 0]
[ 0 0 2079 0]])
"""
assert np.allclose(L @ M @ R, D)
assert np.around(np.abs(np.linalg.det(L))) == 1 # unimodular
assert np.around(np.abs(np.linalg.det(R))) == 1 # unimodular
# Row-style hermite normal form
H, L = row_style_hermite_normal_form(M)
"""
H = array([
[ 1 0 420 -2522]
[ 0 3 1809 -10860]
[ 0 0 2079 -12474]])
"""
assert np.allclose(L @ M, H)
assert np.around(np.abs(np.linalg.det(L))) == 1 # unimodular
# Column-style hermite normal form
H, R = column_style_hermite_normal_form(M)
"""
H = array([
[ 3 0 0 0]
[ 0 1 0 0]
[1185 474 2079 0]])
"""
assert np.allclose(np.dot(M, R), H)
assert np.around(np.abs(np.linalg.det(R))) == 1 # unimodular
Installation
hsnf works with Python3.8+ and can be installed via PyPI:
pip install hsnf
or in local:
git clone git@github.com:lan496/hsnf.git
cd hsnf
pip install -e .[dev,docs]
References
- http://www.dlfer.xyz/post/2016-10-27-smith-normal-form/
- I appreciate Dr. D. L. Ferrario's instructive blog post and his approval for referring his scripts.
- CSE206A: Lattices Algorithms and Applications (Spring 2014)
- Henri Cohen, A Course in Computational Algebraic Number Theory (Springer-Verlag, Berlin, 1993).
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
hsnf-0.3.15.tar.gz
(20.9 kB
view details)
Built Distribution
hsnf-0.3.15-py3-none-any.whl
(11.0 kB
view details)
File details
Details for the file hsnf-0.3.15.tar.gz
.
File metadata
- Download URL: hsnf-0.3.15.tar.gz
- Upload date:
- Size: 20.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c5cef2a0de42d0bf28d8e7fd70a683830731a8fb238df34c1de0e72a704c7a8c |
|
MD5 | 32747f06aa2358aa243f53f9d91de11a |
|
BLAKE2b-256 | fdf3bafa947cd8695682d194f3c15c66cefe7969fcf2afda1b237aa251ad6d5f |
File details
Details for the file hsnf-0.3.15-py3-none-any.whl
.
File metadata
- Download URL: hsnf-0.3.15-py3-none-any.whl
- Upload date:
- Size: 11.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | add14603134ca82324283078123e618ece88e812e5412a4752ccfbfeb0c78729 |
|
MD5 | 6ff239ab5b649f78373a080f707b4066 |
|
BLAKE2b-256 | 8c216f716de08db601d64775576a7201e47a5106d3373f4b96c006ea2521d41f |