Skip to main content

Client interface for Scrapinghub HubStorage

Project description

https://badge.fury.io/py/hubstorage.png https://secure.travis-ci.org/scrapinghub/python-hubstorage.png?branch=master

Overview

This Python library can be used for interaction with spiders, jobs and scraped data through storage.scrapinghub.com endpoints, see Scrapinghub API.

Requirements

Testing

Running the tests require the hubstorage backend to be running, and the python responses library (see requirements-test.txt).

Usage

First, use your API key for authorization:

>>> from hubstorage import HubstorageClient
>>> hс = HubstorageClient(auth='apikey')
>>> hc.server_timestamp()
1446222762611

Project

To get project settings or jobs summary:

>>> project = hc.get_project('1111111')
>>> project.settings['botgroups']
[u'botgroup1', ]
>>> project.jobsummary()
{u'finished': 6,
 u'has_capacity': True,
 u'pending': 0,
 u'project': 1111111,
 u'running': 0}

Spider

To get spider id correlated with its name:

>>> project.ids.spider('foo')
1

To see last jobs summaries:

>>> summaries = project.spiders.lastjobsummary(count=3)

To get job summary per spider:

>>> summary = project.spiders.lastjobsummary(spiderid='1')

Job

Job can be retrieved directly by id (project_id/spider_id/job_id):

>>> job = hc.get_job('1111111/1/1')
>>> job.key
'1111111/1/1'
>>> job.metadata['state']
u'finished'

Creating a new job requires a spider name:

>>> job = hc.push_job(projectid='1111111', spidername='foo')
>>> job.key
'1111111/1/1'

Priority can be between 0 and 4 (from lowest to highest), the default is 2.

To push job from project level with the highest priority:

>>> job = project.push_job(spidername='foo', priority=4)
>>> job.metadata['priority']
4

Pushing a job with spider arguments:

>>> project.push_job(spidername='foo', spider_args={'arg1': 'foo', 'arg2': 'bar'})

Running job can be cancelled by calling request_cancel():

>>> job.request_cancel()
>>> job.metadata['cancelled_by']
u'John'

To delete job:

>>> job.purged()
>>> job.metadata['state']
u'deleted'

Job details

Job details can be found in jobs metadata and it’s scrapystats:

>>> job = hc.get_job('1111111/1/1')
>>> job.metadata['version']
u'5123a86-master'
>>> job.metadata['scrapystats']
...
u'downloader/response_count': 104,
u'downloader/response_status_count/200': 104,
u'finish_reason': u'finished',
u'finish_time': 1447160494937,
u'item_scraped_count': 50,
u'log_count/DEBUG': 157,
u'log_count/INFO': 1365,
u'log_count/WARNING': 3,
u'memusage/max': 182988800,
u'memusage/startup': 62439424,
...

Anything can be stored in metadata, here is example how to add tags:

>>> job.update_metadata({'tags': 'obsolete'})

Jobs

To iterate through all jobs metadata per project (descending order):

>>> jobs_metadata = project.jobq.list()
>>> [j['key'] for j in jobs_metadata]
['1111111/1/3', '1111111/1/2', '1111111/1/1']

Jobq metadata fieldset is less detailed, than job.metadata, but contains few new fields as well. Additional fields can be requested using the jobmeta parameter. If it used, then it’s up to the user to list all the required fields, so only few default fields would be added except requested ones.

>>> metadata = next(project.jobq.list())
>>> metadata.get('spider', 'missing')
u'foo'
>>> jobs_metadata = project.jobq.list(jobmeta=['scheduled_by', ])
>>> metadata = next(jobs_metadata)
>>> metadata.get('scheduled_by', 'missing')
u'John'
>>> metadata.get('spider', 'missing')
missing

By default jobq.list() returns maximum last 1000 results. Pagination is available using the start parameter:

>>> jobs_metadata = project.jobq.list(start=1000)

There are several filters like spider, state, has_tag, lacks_tag, startts and endts. To get jobs filtered by tags:

>>> jobs_metadata = project.jobq.list(has_tag=['new', 'verified'], lacks_tag='obsolete')

List of tags has OR power, so in the case above jobs with ‘new’ or ‘verified’ tag are expected.

To get certain number of last finished jobs per some spider:

>>> jobs_metadata = project.jobq.list(spider='foo', state='finished' count=3)

There are 4 possible job states, which can be used as values for filtering by state:

  • pending

  • running

  • finished

  • deleted

Items

To iterate through items:

>>> items = job.items.iter_values()
>>> for item in items:
   # do something, item is just a dict

Logs

To iterate through 10 first logs for example:

>>> logs = job.logs.iter_values(count=10)
>>> for log in logs:
   # do something, log is a dict with log level, message and time keys

Collections

Let’s store hash and timestamp pair for foo spider. Usual workflow with Collections would be:

>>> collections = project.collections
>>> foo_store = collections.new_store('foo_store')
>>> foo_store.set({'_key': '002d050ee3ff6192dcbecc4e4b4457d7', 'value': '1447221694537'})
>>> foo_store.count()
1
>>> foo_store.get('002d050ee3ff6192dcbecc4e4b4457d7')
'1447221694537'
>>> for result in foo_store.iter_values():
   # do something with _key & value pair
>>> foo_store.delete('002d050ee3ff6192dcbecc4e4b4457d7')
>>> foo_store.count()
0

Frontier

Typical workflow with Frontier:

>>> frontier = project.frontier

Add a request to the frontier:

>>> frontier.add('test', 'example.com', [{'fp': '/some/path.html'}])
>>> frontier.flush()
>>> frontier.newcount
1

Add requests with additional parameters:

>>> frontier.add('test', 'example.com', [{'fp': '/'}, {'fp': 'page1.html', 'p': 1, 'qdata': {'depth': 1}}])
>>> frontier.flush()
>>> frontier.newcount
2

To delete the slot example.com from the frontier:

>>> frontier.delete_slot('test', 'example.com')

To retrieve requests for a given slot:

>>> reqs = frontier.read('test', 'example.com')

To delete a batch of requests:

>>> frontier.delete('test', 'example.com', '00013967d8af7b0001')

To retrieve fingerprints for a given slot:

>>> fps = [req['requests'] for req in frontier.read('test', 'example.com')]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hubstorage-0.23.0.tar.gz (29.3 kB view details)

Uploaded Source

Built Distribution

hubstorage-0.23.0-py2-none-any.whl (35.7 kB view details)

Uploaded Python 2

File details

Details for the file hubstorage-0.23.0.tar.gz.

File metadata

  • Download URL: hubstorage-0.23.0.tar.gz
  • Upload date:
  • Size: 29.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for hubstorage-0.23.0.tar.gz
Algorithm Hash digest
SHA256 c2abf72ea5fbf570f0e15c3f43364d51493b4660f38c478197cd0d85d2c09c28
MD5 74e5076a5145e2aa712280932a4a021a
BLAKE2b-256 ce4bbf3085c4a648368037caa98c18427f6d8d526daf0400b0efa1244b77dc59

See more details on using hashes here.

Provenance

File details

Details for the file hubstorage-0.23.0-py2-none-any.whl.

File metadata

File hashes

Hashes for hubstorage-0.23.0-py2-none-any.whl
Algorithm Hash digest
SHA256 eb4d588570a747d39618359635162235647492c0d260b46d24ed878124a8140f
MD5 82b84c2f6df2caf852fb666f1e42860f
BLAKE2b-256 018271b97b8525224e4ac3d06076efa75fb8327d3671d40a0ce690e7ad165657

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page