Skip to main content

Client interface for Scrapinghub HubStorage

Project description

https://badge.fury.io/py/hubstorage.png https://travis-ci.org/scrapinghub/python-hubstorage.svg?branch=master

Overview

This Python library can be used for interaction with spiders, jobs and scraped data through storage.scrapinghub.com endpoints, see Scrapinghub API.

Requirements

Testing

Running the tests require the hubstorage backend to be running, and the python responses library (see requirements-test.txt).

Usage

First, use your API key for authorization:

>>> from hubstorage import HubstorageClient
>>> hс = HubstorageClient(auth='apikey')
>>> hc.server_timestamp()
1446222762611

Project

To get project settings or jobs summary:

>>> project = hc.get_project('1111111')
>>> project.settings['botgroups']
[u'botgroup1', ]
>>> project.jobsummary()
{u'finished': 6,
 u'has_capacity': True,
 u'pending': 0,
 u'project': 1111111,
 u'running': 0}

Spider

To get spider id correlated with its name:

>>> project.ids.spider('foo')
1

To see last jobs summaries:

>>> summaries = project.spiders.lastjobsummary(count=3)

To get job summary per spider:

>>> summary = project.spiders.lastjobsummary(spiderid='1')

Job

Job can be retrieved directly by id (project_id/spider_id/job_id):

>>> job = hc.get_job('1111111/1/1')
>>> job.key
'1111111/1/1'
>>> job.metadata['state']
u'finished'

Creating a new job requires a spider name:

>>> job = hc.push_job(projectid='1111111', spidername='foo')
>>> job.key
'1111111/1/1'

Priority can be between 0 and 4 (from lowest to highest), the default is 2.

To push job from project level with the highest priority:

>>> job = project.push_job(spidername='foo', priority=4)
>>> job.metadata['priority']
4

Pushing a job with spider arguments:

>>> project.push_job(spidername='foo', spider_args={'arg1': 'foo', 'arg2': 'bar'})

Running job can be cancelled by calling request_cancel():

>>> job.request_cancel()
>>> job.metadata['cancelled_by']
u'John'

To delete job:

>>> job.purged()
>>> job.metadata['state']
u'deleted'

Job details

Job details can be found in jobs metadata and it’s scrapystats:

>>> job = hc.get_job('1111111/1/1')
>>> job.metadata['version']
u'5123a86-master'
>>> job.metadata['scrapystats']
...
u'downloader/response_count': 104,
u'downloader/response_status_count/200': 104,
u'finish_reason': u'finished',
u'finish_time': 1447160494937,
u'item_scraped_count': 50,
u'log_count/DEBUG': 157,
u'log_count/INFO': 1365,
u'log_count/WARNING': 3,
u'memusage/max': 182988800,
u'memusage/startup': 62439424,
...

Anything can be stored in metadata, here is example how to add tags:

>>> job.update_metadata({'tags': 'obsolete'})

Jobs

To iterate through all jobs metadata per project (descending order):

>>> jobs_metadata = project.jobq.list()
>>> [j['key'] for j in jobs_metadata]
['1111111/1/3', '1111111/1/2', '1111111/1/1']

Jobq metadata fieldset is less detailed, than job.metadata, but contains few new fields as well. Additional fields can be requested using the jobmeta parameter. If it used, then it’s up to the user to list all the required fields, so only few default fields would be added except requested ones.

>>> metadata = next(project.jobq.list())
>>> metadata.get('spider', 'missing')
u'foo'
>>> jobs_metadata = project.jobq.list(jobmeta=['scheduled_by', ])
>>> metadata = next(jobs_metadata)
>>> metadata.get('scheduled_by', 'missing')
u'John'
>>> metadata.get('spider', 'missing')
missing

By default jobq.list() returns maximum last 1000 results. Pagination is available using the start parameter:

>>> jobs_metadata = project.jobq.list(start=1000)

There are several filters like spider, state, has_tag, lacks_tag, startts and endts. To get jobs filtered by tags:

>>> jobs_metadata = project.jobq.list(has_tag=['new', 'verified'], lacks_tag='obsolete')

List of tags has OR power, so in the case above jobs with ‘new’ or ‘verified’ tag are expected.

To get certain number of last finished jobs per some spider:

>>> jobs_metadata = project.jobq.list(spider='foo', state='finished' count=3)

There are 4 possible job states, which can be used as values for filtering by state:

  • pending

  • running

  • finished

  • deleted

Items

To iterate through items:

>>> items = job.items.iter_values()
>>> for item in items:
   # do something, item is just a dict

Logs

To iterate through 10 first logs for example:

>>> logs = job.logs.iter_values(count=10)
>>> for log in logs:
   # do something, log is a dict with log level, message and time keys

Collections

Let’s store hash and timestamp pair for foo spider. Usual workflow with Collections would be:

>>> collections = project.collections
>>> foo_store = collections.new_store('foo_store')
>>> foo_store.set({'_key': '002d050ee3ff6192dcbecc4e4b4457d7', 'value': '1447221694537'})
>>> foo_store.count()
1
>>> foo_store.get('002d050ee3ff6192dcbecc4e4b4457d7')
'1447221694537'
>>> for result in foo_store.iter_values():
   # do something with _key & value pair
>>> foo_store.delete('002d050ee3ff6192dcbecc4e4b4457d7')
>>> foo_store.count()
0

Frontier

Typical workflow with Frontier:

>>> frontier = project.frontier

Add a request to the frontier:

>>> frontier.add('test', 'example.com', [{'fp': '/some/path.html'}])
>>> frontier.flush()
>>> frontier.newcount
1

Add requests with additional parameters:

>>> frontier.add('test', 'example.com', [{'fp': '/'}, {'fp': 'page1.html', 'p': 1, 'qdata': {'depth': 1}}])
>>> frontier.flush()
>>> frontier.newcount
2

To delete the slot example.com from the frontier:

>>> frontier.delete_slot('test', 'example.com')

To retrieve requests for a given slot:

>>> reqs = frontier.read('test', 'example.com')

To delete a batch of requests:

>>> frontier.delete('test', 'example.com', '00013967d8af7b0001')

To retrieve fingerprints for a given slot:

>>> fps = [req['requests'] for req in frontier.read('test', 'example.com')]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hubstorage-0.23.3.tar.gz (30.3 kB view details)

Uploaded Source

Built Distribution

hubstorage-0.23.3-py2-none-any.whl (36.7 kB view details)

Uploaded Python 2

File details

Details for the file hubstorage-0.23.3.tar.gz.

File metadata

  • Download URL: hubstorage-0.23.3.tar.gz
  • Upload date:
  • Size: 30.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for hubstorage-0.23.3.tar.gz
Algorithm Hash digest
SHA256 6114ee5564d23a7d4683fa2cad09c25ffcf94924112fdbb7e22ff13472e648d8
MD5 2f554db40e8bf700f6319662b50f76c1
BLAKE2b-256 36dac8ae498355bd402d2e793d18992ce9f9f38bce934676b219c929814c9cd1

See more details on using hashes here.

Provenance

File details

Details for the file hubstorage-0.23.3-py2-none-any.whl.

File metadata

File hashes

Hashes for hubstorage-0.23.3-py2-none-any.whl
Algorithm Hash digest
SHA256 55e2aa4d4762a13b12743811aee09d3aa7070898d01155760f049e115f90cb7f
MD5 1911dce4679f918d58552c41726d0441
BLAKE2b-256 64e812615972c481614cbd21db15f5146418b6b791ca7565ffcc5cf2f735dc9d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page