Extends Hypothesis to add fully automatic testing of type annotated functions
Project description
Read Latest Documentation - Browse GitHub Code Repository
hypothesis-auto is an extension for the Hypothesis project that enables fully automatic tests for type annotated functions.
Key Features:
- Type Annotation Powered: Utilize your function's existing type annotations to build dozens of test cases automatically.
- Low Barrier: Start utilizing property-based testing in the lowest barrier way possible. Just run
auto_test(FUNCTION)
to run dozens of test. - pytest Compatible: Like Hypothesis itself, hypothesis-auto has built-in compatibility with the popular pytest testing framework. This means that you can turn your automatically generated tests into individual pytest test cases with one line.
- Scales Up: As you find your self needing to customize your auto_test cases, you can easily utilize all the features of Hypothesis, including custom strategies per a parameter.
Installation:
To get started - install hypothesis-auto
into your projects virtual environment:
pip3 install hypothesis-auto
OR
poetry add hypothesis-auto
OR
pipenv install hypothesis-auto
Usage Examples:
!!! warning
In old usage examples you will see _
prefixed parameters like _auto_verify=
. This was done to avoid conflicting with existing function parameters.
Based on community feedback the project switched to _
suffixes, such as auto_verify_=
to keep the likely hood of conflicting low while
avoiding the connotation of private parameters.
Framework independent usage
Basic auto_test
usage:
from hypothesis_auto import auto_test
def add(number_1: int, number_2: int = 1) -> int:
return number_1 + number_2
auto_test(add) # 50 property based scenarios are generated and ran against add
auto_test(add, auto_runs_=1_000) # Let's make that 1,000
Adding an allowed exception:
from hypothesis_auto import auto_test
def divide(number_1: int, number_2: int) -> int:
return number_1 / number_2
auto_test(divide)
-> 1012 raise the_error_hypothesis_found
1013
1014 for attrib in dir(test):
<ipython-input-2-65a3aa66e9f9> in divide(number_1, number_2)
1 def divide(number_1: int, number_2: int) -> int:
----> 2 return number_1 / number_2
3
0/0
ZeroDivisionError: division by zero
auto_test(divide, auto_allow_exceptions_=(ZeroDivisionError, ))
Using auto_test
with a custom verification method:
from hypothesis_auto import Scenario, auto_test
def add(number_1: int, number_2: int = 1) -> int:
return number_1 + number_2
def my_custom_verifier(scenario: Scenario):
if scenario.kwargs["number_1"] > 0 and scenario.kwargs["number_2"] > 0:
assert scenario.result > scenario.kwargs["number_1"]
assert scenario.result > scenario.kwargs["number_2"]
elif scenario.kwargs["number_1"] < 0 and scenario.kwargs["number_2"] < 0:
assert scenario.result < scenario.kwargs["number_1"]
assert scenario.result < scenario.kwargs["number_2"]
else:
assert scenario.result >= min(scenario.kwargs.values())
assert scenario.result <= max(scenario.kwargs.values())
auto_test(add, auto_verify_=my_custom_verifier)
Custom verification methods should take a single Scenario and raise an exception to signify errors.
For the full set of parameters, you can pass into auto_test see its API reference documentation.
pytest usage
Using auto_pytest_magic
to auto-generate dozens of pytest test cases:
from hypothesis_auto import auto_pytest_magic
def add(number_1: int, number_2: int = 1) -> int:
return number_1 + number_2
auto_pytest_magic(add)
Using auto_pytest
to run dozens of test case within a temporary directory:
from hypothesis_auto import auto_pytest
def add(number_1: int, number_2: int = 1) -> int:
return number_1 + number_2
@auto_pytest()
def test_add(test_case, tmpdir):
tmpdir.mkdir().chdir()
test_case()
Using auto_pytest_magic
with a custom verification method:
from hypothesis_auto import Scenario, auto_pytest
def add(number_1: int, number_2: int = 1) -> int:
return number_1 + number_2
def my_custom_verifier(scenario: Scenario):
if scenario.kwargs["number_1"] > 0 and scenario.kwargs["number_2"] > 0:
assert scenario.result > scenario.kwargs["number_1"]
assert scenario.result > scenario.kwargs["number_2"]
elif scenario.kwargs["number_1"] < 0 and scenario.kwargs["number_2"] < 0:
assert scenario.result < scenario.kwargs["number_1"]
assert scenario.result < scenario.kwargs["number_2"]
else:
assert scenario.result >= min(scenario.kwargs.values())
assert scenario.result <= max(scenario.kwargs.values())
auto_pytest_magic(add, auto_verify_=my_custom_verifier)
Custom verification methods should take a single Scenario and raise an exception to signify errors.
For the full reference of the pytest integration API see the API reference documentation.
Why Create hypothesis-auto?
I wanted a no/low resistance way to start incorporating property-based tests across my projects. Such a solution that also encouraged the use of type hints was a win/win for me.
I hope you too find hypothesis-auto
useful!
~Timothy Crosley
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file hypothesis_auto-1.1.5.tar.gz
.
File metadata
- Download URL: hypothesis_auto-1.1.5.tar.gz
- Upload date:
- Size: 9.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/6.0.12-76060006-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 534bdc381f635e6515e6fd88c326d5bb66ab6351693e72a43fb9b691b0f5911c |
|
MD5 | ed3688878c30ebc727cae3e668d8a00f |
|
BLAKE2b-256 | 149da491aaf55e61b4fee99508d8d2ede409c760ced3e0156d78bcbd34a8e4df |
File details
Details for the file hypothesis_auto-1.1.5-py3-none-any.whl
.
File metadata
- Download URL: hypothesis_auto-1.1.5-py3-none-any.whl
- Upload date:
- Size: 7.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/6.0.12-76060006-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7e962789a9ac691d4d9b6996f06f7afa1708013b67fd2df93a8857a92d6d7854 |
|
MD5 | 9715b08370b7437091605e6c0f2c15a7 |
|
BLAKE2b-256 | 7bce70744537742b0a6fd155a9b1e6edcfd824a687c2234a1d78c09dd473acb1 |