Extends Hypothesis to add fully automatic testing of type annotated functions
Project description
Read Latest Documentation - Browse GitHub Code Repository
hypothesis-auto is an extension for the Hypothesis project that enables fully automatic tests for type annotated functions.
Key Features:
- Type Annotation Powered: Utilize your function's existing type annotations to build dozens of test cases automatically.
- Low Barrier: Start utilizing property-based testing in the lowest barrier way possible. Just run
auto_test(FUNCTION)
to run dozens of test. - py.test Compatible: Built-in compatibility with the popular py.test testing framework. This means that you can turn your automatically generated tests into individual py.test test cases with one line.
- Scales Up: As you find your self needing to customize your auto_test cases, you can easily utilize all the features of Hypothesis, including custom strategies per a parameter.
Installation:
To get started - install hypothesis-auto
into your projects virtual environment:
pip3 install hypothesis-auto
OR
poetry add hypothesis-auto
OR
pipenv install hypothesis-auto
Usage Examples:
!!! warning
In old usage examples you will see _
prefixed parameters like _auto_verify=
to avoid conflicted with existing function parameters.
Based on community feedback the project switched to _
suffixes, such as auto_verify_=
to keep the likely hood of conflicting low while
avoiding the connotation of private parameters.
Framework independent usage
Basic auto_test
usage:
from hypothesis_auto import auto_test
def add(number_1: int, number_2: int = 1) -> int:
return number_1 + number_2
auto_test(add) # 50 property based scenerios are generated and ran against add
auto_test(add, auto_runs_=1_000) # Let's make that 1,000
Adding an allowed exception:
from hypothesis_auto import auto_test
def divide(number_1: int, number_2: int) -> int:
return number_1 / number_2
auto_test(divide)
-> 1012 raise the_error_hypothesis_found
1013
1014 for attrib in dir(test):
<ipython-input-2-65a3aa66e9f9> in divide(number_1, number_2)
1 def divide(number_1: int, number_2: int) -> int:
----> 2 return number_1 / number_2
3
0/0
ZeroDivisionError: division by zero
auto_test(divide, auto_allow_exceptions_=(ZeroDivisionError, ))
Using auto_test
with a custom verification method:
from hypothesis_auto import Scenerio, auto_test
def add(number_1: int, number_2: int = 1) -> int:
return number_1 + number_2
def my_custom_verifier(scenerio: Scenerio):
if scenerio.kwargs["number_1"] > 0 and scenerio.kwargs["number_2"] > 0:
assert scenerio.result > scenerio.kwargs["number_1"]
assert scenerio.result > scenerio.kwargs["number_1"]
elif scenerio.kwargs["number_1"] < 0 and scenerio.kwargs["number_2"] < 0:
assert scenerio.result < scenerio.kwargs["number_1"]
assert scenerio.result < scenerio.kwargs["number_1"]
else:
assert scenerio.result >= min(scenerio.kwargs.values())
assert scenerio.result <= max(scenerio.kwargs.values())
auto_test(add, auto_verify_=my_custom_verifier)
Custom verification methods should take a single Scenerio and raise an exception to signify errors.
For the full set of parameters, you can pass into auto_test see its API reference documentation.
py.test usage
Using auto_pytest_magic
to auto-generate dozens of py.test test cases:
from hypothesis_auto import auto_pytest_magic
def add(number_1: int, number_2: int = 1) -> int:
return number_1 + number_2
auto_pytest_magic(add)
Using auto_pytest
to run dozens of test case within a temporary directory:
from hypothesis_auto import auto_pytest
def add(number_1: int, number_2: int = 1) -> int:
return number_1 + number_2
@auto_pytest()
def test_add(test_case, tmpdir):
tmpdir.mkdir().chdir()
test_case()
Using auto_pytest_magic
with a custom verification method:
from hypothesis_auto import Scenerio, auto_pytest
def add(number_1: int, number_2: int = 1) -> int:
return number_1 + number_2
def my_custom_verifier(scenerio: Scenerio):
if scenerio.kwargs["number_1"] > 0 and scenerio.kwargs["number_2"] > 0:
assert scenerio.result > scenerio.kwargs["number_1"]
assert scenerio.result > scenerio.kwargs["number_1"]
elif scenerio.kwargs["number_1"] < 0 and scenerio.kwargs["number_2"] < 0:
assert scenerio.result < scenerio.kwargs["number_1"]
assert scenerio.result < scenerio.kwargs["number_1"]
else:
assert scenerio.result >= min(scenerio.kwargs.values())
assert scenerio.result <= max(scenerio.kwargs.values())
auto_pytest_magic(add, auto_verify_=my_custom_verifier)
Custom verification methods should take a single Scenerio and raise an exception to signify errors.
For the full reference of the py.test integration API see the API reference documentation.
Why Create hypothesis-auto?
I wanted a no/low resistance way to start incorporating property-based tests across my projects. Such a solution that also encouraged the use of type hints was a win/win for me.
I hope you too find hypothesis-auto
useful!
~Timothy Crosley
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for hypothesis_auto-1.1.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e090155779abee903902e5357a6e414dc37a00aa3e735dff943d85f8b45095b7 |
|
MD5 | 43424b70dcd94b1923ecff24df774e73 |
|
BLAKE2b-256 | 8b23787e1334e42212f2353ad80e00bb0d9455e2ceac50a640b6e863cde3c612 |