Skip to main content

The ICEBERG Penguin colony usecase package

Project description

## Quality Metrics

[![Build Status](https://travis-ci.com/iceberg-project/Penguins.svg?branch=devel)](https://travis-ci.com/iceberg-project/Penguins)

## Software Dependencies

  • boost==1.66.0

  • gdal==2.1.4

  • geotiff==1.4.2

  • matplotlib==2.1.0

  • opencv==2.4.13

  • openjpeg==2.1.2

  • pillow==4.2.1

  • python==2.7.15

  • pytorch==0.3.1

  • rasterio==0.36.0

  • scikit-learn==0.19.1

  • scipy==1.2.1

  • scipy==0.19.0

  • torchvision==0.2.0

  • visdom==0.1.8.9

## Installation

### PSC Bridges >From source: `bash $ git clone https://github.com/iceberg-project/Penguins.git $ module load cuda $ module load python3 $ virtualenv iceberg_penguins $ source iceberg_penguins/bin/activate [iceberg_penguins] $ export PYTHONPATH=<path>/iceberg_penguins/lib/python3.5/site-packages [iceberg_penguins] $ pip install . --upgrade `

>From PyPi: `bash $ module load cuda $ module load python3 $ virtualenv iceberg_penguins $ source iceberg_penguins/bin/activate [iceberg_penguins] $ export PYTHONPATH=<path>/iceberg_penguins/lib/python3.5/site-packages [iceberg_penguins] $ pip install iceberg_penguins.search `

To test `bash [iceberg_penguins] $ iceberg_penguins.detect `

### Prediction - Download a pre-trained model at:

https://drive.google.com/file/d/149j5rlynkO1jQTLOMpL5lextHY0ozw6N/view?usp=sharing

Please put the model file to: <checkpoints_dir>/<model_name>/

The one provided here is at the epoch 300 of the model named “v3weakly_unetr_bs96_main_model_ignore_bad”

  • The script to run the testing for a single PNG image:

iceberg_penguins.detect [–params …]

## params: - –name: name of the model used for testing - –gpu_ids: the gpu used for testing - –checkpoints_dir: path to the folder containing the trained models - –epoch: which epoch we use to test the model - –input_im: path to the input image - –output: directory to save the outputs

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iceberg_penguins.search-0.2.4.1.tar.gz (40.7 kB view details)

Uploaded Source

Built Distribution

iceberg_penguins.search-0.2.4.1-py3-none-any.whl (64.8 kB view details)

Uploaded Python 3

File details

Details for the file iceberg_penguins.search-0.2.4.1.tar.gz.

File metadata

  • Download URL: iceberg_penguins.search-0.2.4.1.tar.gz
  • Upload date:
  • Size: 40.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/20.10.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.5.2

File hashes

Hashes for iceberg_penguins.search-0.2.4.1.tar.gz
Algorithm Hash digest
SHA256 ceaffdbe8e9f154e0e8a825c7c27a580fe6ac8175a6906332643bd28e2a27a62
MD5 ae2a9ca3ad1bb5c3793a0ac1582c9413
BLAKE2b-256 c9e1f3087fdff89d577f34eb07a8e84069dacc36af1f8e0d7f997966d3b84cf3

See more details on using hashes here.

File details

Details for the file iceberg_penguins.search-0.2.4.1-py3-none-any.whl.

File metadata

  • Download URL: iceberg_penguins.search-0.2.4.1-py3-none-any.whl
  • Upload date:
  • Size: 64.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/20.10.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.5.2

File hashes

Hashes for iceberg_penguins.search-0.2.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 102966cb4a2f25332824a8dae6d4b75ee13a01e46b38334a38e095ba1e9101c2
MD5 0a6a32449c3450b8108324d62307320a
BLAKE2b-256 19190dd4bc928dce8894a13edaf7c59aa4b6a756802d9a12d95193f74d8ff86f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page