Skip to main content

The ICEBERG Penguin colony usecase package

Project description

## Quality Metrics

[![Build Status](https://travis-ci.com/iceberg-project/Penguins.svg?branch=devel)](https://travis-ci.com/iceberg-project/Penguins)

## Software Dependencies

  • boost==1.66.0

  • gdal==2.1.4

  • geotiff==1.4.2

  • matplotlib==2.1.0

  • opencv==2.4.13

  • openjpeg==2.1.2

  • pillow==4.2.1

  • python==2.7.15

  • pytorch==0.3.1

  • rasterio==0.36.0

  • scikit-learn==0.19.1

  • scipy==1.2.1

  • scipy==0.19.0

  • torchvision==0.2.0

  • visdom==0.1.8.9

## Installation

### PSC Bridges >From source: `bash $ git clone https://github.com/iceberg-project/Penguins.git $ module load cuda $ module load python3 $ virtualenv iceberg_penguins $ source iceberg_penguins/bin/activate [iceberg_penguins] $ export PYTHONPATH=<path>/iceberg_penguins/lib/python3.5/site-packages [iceberg_penguins] $ pip install . --upgrade `

>From PyPi: `bash $ module load cuda $ module load python3 $ virtualenv iceberg_penguins $ source iceberg_penguins/bin/activate [iceberg_penguins] $ export PYTHONPATH=<path>/iceberg_penguins/lib/python3.5/site-packages [iceberg_penguins] $ pip install iceberg_penguins.search `

To test `bash [iceberg_penguins] $ iceberg_penguins.detect `

### Prediction - Download a pre-trained model at:

https://drive.google.com/file/d/149j5rlynkO1jQTLOMpL5lextHY0ozw6N/view?usp=sharing

Please put the model file to: <checkpoints_dir>/<model_name>/

The one provided here is at the epoch 300 of the model named “v3weakly_unetr_bs96_main_model_ignore_bad”

  • The script to run the testing for a single PNG image:

iceberg_penguins.detect [–params …]

## params: - –name: name of the model used for testing - –gpu_ids: the gpu used for testing - –checkpoints_dir: path to the folder containing the trained models - –epoch: which epoch we use to test the model - –input_im: path to the input image - –output: directory to save the outputs

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iceberg_penguins.search-0.2.4.3.tar.gz (40.8 kB view details)

Uploaded Source

Built Distribution

iceberg_penguins.search-0.2.4.3-py3-none-any.whl (64.8 kB view details)

Uploaded Python 3

File details

Details for the file iceberg_penguins.search-0.2.4.3.tar.gz.

File metadata

  • Download URL: iceberg_penguins.search-0.2.4.3.tar.gz
  • Upload date:
  • Size: 40.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/20.10.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.5.2

File hashes

Hashes for iceberg_penguins.search-0.2.4.3.tar.gz
Algorithm Hash digest
SHA256 ded854d5082d0e85e6b79ea91e994425a49feea07209161b0b45e6b8691fc868
MD5 d58d1450a8c5800266e003451797623c
BLAKE2b-256 dc48e7cbd3c16f1ae50db10b56ed080f505a13dea3580df2e60570b3a243080e

See more details on using hashes here.

File details

Details for the file iceberg_penguins.search-0.2.4.3-py3-none-any.whl.

File metadata

  • Download URL: iceberg_penguins.search-0.2.4.3-py3-none-any.whl
  • Upload date:
  • Size: 64.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/20.10.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.5.2

File hashes

Hashes for iceberg_penguins.search-0.2.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 d29da78c1ef5663777fa61e50613e009b05f1b11eac3dc0c0542cd30df8e79be
MD5 36a1548595e829277112ab3a8c54dbde
BLAKE2b-256 fde3f45d1f93b6814eef4232f3639dabf6bdf6efdb1123fbc509465d4c8ff433

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page