Skip to main content

The ICEBERG Penguin colony usecase package

Project description

Quality Metrics

Build Status

Prerequisites

  • Linux
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Software Dependencies

  • scipy==1.2.1
  • Pillow==4.3.0
  • torch
  • scikit-learn==0.19.1
  • torchvision==0.2.0'
  • opencv-python
  • rasterio
  • future

Installation

PSC Bridges

From source:

$ git clone https://github.com/iceberg-project/Penguins.git
$ module load cuda
$ module load python3
$ virtualenv iceberg_penguins
$ source iceberg_penguins/bin/activate
[iceberg_penguins] $ export PYTHONPATH=<path>/iceberg_penguins/lib/python3.5/site-packages
[iceberg_penguins] $ pip install . --upgrade

From PyPi:

$ module load cuda
$ module load python3
$ virtualenv iceberg_penguins
$ source iceberg_penguins/bin/activate
[iceberg_penguins] $ export PYTHONPATH=<path>/iceberg_penguins/lib/python3.5/site-packages
[iceberg_penguins] $ pip install iceberg_penguins.search

To test

[iceberg_penguins] $ iceberg_penguins.detect

Prediction

  • Download a pre-trained model at:

https://drive.google.com/file/d/149j5rlynkO1jQTLOMpL5lextHY0ozw6N/view?usp=sharing

Please put the model file to: <checkpoints_dir>/<model_name>/

The one provided here is at the epoch 300 of the model named "v3weakly_unetr_bs96_main_model_ignore_bad"

  • The script to run the testing for a single PNG image:

iceberg_penguins.detect [--params ...]

params:

  • --name: name of the model used for testing
  • --gpu_ids: the gpu used for testing
  • --checkpoints_dir: path to the folder containing the trained models
  • --epoch: which epoch we use to test the model
  • --input_im: path to the input image
  • --output: directory to save the outputs

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iceberg_penguins.search-0.2.7.tar.gz (39.3 kB view details)

Uploaded Source

Built Distribution

iceberg_penguins.search-0.2.7-py3-none-any.whl (61.7 kB view details)

Uploaded Python 3

File details

Details for the file iceberg_penguins.search-0.2.7.tar.gz.

File metadata

  • Download URL: iceberg_penguins.search-0.2.7.tar.gz
  • Upload date:
  • Size: 39.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.5.2

File hashes

Hashes for iceberg_penguins.search-0.2.7.tar.gz
Algorithm Hash digest
SHA256 08674577e98137758774d07193865e645cb2e91e946ca70d8d6ad1e058b1a30b
MD5 a41852e9a627cb3cdb1eddc2205e7ebb
BLAKE2b-256 a36996041fbdb79c6adbb4691347c1224b328c947f44e83cd0a03ed32b72e82b

See more details on using hashes here.

File details

Details for the file iceberg_penguins.search-0.2.7-py3-none-any.whl.

File metadata

  • Download URL: iceberg_penguins.search-0.2.7-py3-none-any.whl
  • Upload date:
  • Size: 61.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.5.2

File hashes

Hashes for iceberg_penguins.search-0.2.7-py3-none-any.whl
Algorithm Hash digest
SHA256 457c7357ca9b086d666a82b6269163e64ff657951946abca4f1338aebf377ffd
MD5 42295e6ab4f8ca32e7ac36a4d83c811f
BLAKE2b-256 03c9d833d27c984e82b1d458a6ae82de1453258671adee123cfa788764e2ffcf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page